Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e32677, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961948

RESUMO

Muscle trauma is one of the most common body injuries. Severe consequences of muscle trauma are ischemic injuries of the extremities. It is known that the intensification of free radical processes takes place in almost most acute diseases and conditions, including muscle trauma. C60 fullerene (C60) with powerful antioxidant properties can be considered a potential nanoagent for developing an effective therapy for skeletal muscle trauma. Here the water-soluble C60 was prepared and its structural organization has been studied by the atomic force microscopy and dynamic light scattering techniques. The selective biomechanical parameters of muscle soleus contraction and biochemical indicators of blood in rats were evaluated after intramuscular injection of C60 1 h before the muscle trauma initiation. Analysis of the force muscle response after C60 injection (1 mg kg-1 dose) showed its protective effect against ischemia and mechanical injury at the level of 30 ± 2 % and 17 ± 1 %, accordingly, relative to the pathology group. Analysis of biomechanical parameters that are responsible for correcting precise positioning confirmed the effectiveness of C60 at a level of more than 50 ± 3 % relative to the pathology group. Moreover, a decrease in the biochemical indicators of blood by about 33 ± 2 % and 10 ± 1 % in ischemia and mechanical injury, correspondingly, relative to the pathology group occurs. The results obtained demonstrate the ability of C60 to correct the functional activity of damaged skeletal muscle.

2.
Molecules ; 29(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998903

RESUMO

The liver is the main organ responsible for the metabolism of ethanol, which suffers significantly as a result of tissue damage due to oxidative stress. It is known that C60 fullerenes are able to efficiently capture and inactivate reactive oxygen species in in vivo and in vitro systems. Therefore, the purpose of this study is to determine whether water-soluble C60 fullerene reduces the level of pathological process development in the liver of rats induced by chronic alcohol intoxication for 3, 6, and 9 months, depending on the daily dose (oral administration; 0.5, 1, and 2 mg/kg) of C60 fullerene throughout the experiment. In this context, the morphology of the C60 fullerene nanoparticles in aqueous solution was studied using atomic force microscopy. Such biochemical parameters of experimental animal blood as ALT (alanine aminotransferase), AST (aspartate aminotransferase), GGT (gamma-glutamyl transferase) and ALP (alkaline phosphatase) enzyme activities, CDT (carbohydrate-deficient transferrin) level, values of pro-antioxidant balance indicators (concentrations of H2O2 (hydrogen peroxide) and GSH (reduced glutathione), activities of CAT (catalase), SOD (superoxide dismutase) and GPx (selenium-dependent glutathione peroxidase)), and pathohistological and morphometric features of liver damage were analyzed. The most significant positive change in the studied biochemical parameters (up to 29 ± 2% relative to the control), as markers of liver damage, was recorded at the combined administration of alcohol (40% ethanol in drinking water) and water-soluble C60 fullerenes in the optimal dose of 1 mg/kg, which was confirmed by small histopathological changes in the liver of rats. The obtained results prove the prospective use of C60 fullerenes as powerful antioxidants for the mitigation of pathological conditions of the liver arising under prolonged alcohol intoxication.


Assuntos
Fulerenos , Fígado , Estresse Oxidativo , Animais , Fulerenos/farmacologia , Ratos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Intoxicação Alcoólica/tratamento farmacológico , Intoxicação Alcoólica/metabolismo , Ratos Wistar , Nanopartículas/química , Etanol/toxicidade
3.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474314

RESUMO

The application of a biocompatible polymer nanocarrier can provide target delivery to tumor tissues, improved pharmacokinetics, controlled drug release, etc. Therefore, the proposed strategy was to use the water-soluble star-like copolymers with a Dextran core and Poly(N-isopropylacrylamide) grafts (D-g-PNIPAM) for conjugation with the widely used chemotherapy drugs in oncology-Cisplatin (Cis-Pt) and Doxorubicin (Dox). The molecular characteristics of the copolymer were received using size-exclusion chromatography. The physicochemical characterization of the D-g-PNIPAM-Cis-Pt (or Dox) nanosystem was conducted using dynamic light scattering and FTIR spectroscopy. Using traditional biochemical methods, a comparative analysis of the enhancement of the cytotoxic effect of free Cis-Pt and Dox in combination with D-g-PNIPAM copolymers was performed in cancer cells of the Lewis lung carcinoma line, which are both sensitive and resistant to Dox; in addition, the mechanism of their action in vitro was evaluated.


Assuntos
Resinas Acrílicas , Antineoplásicos , Polímeros , Polímeros/química , Água , Antineoplásicos/uso terapêutico , Doxorrubicina/química , Portadores de Fármacos/química , Micelas
4.
Heliyon ; 9(8): e18745, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37554800

RESUMO

The C60 fullerene effect (oral administration at a dose of 1 mg kg-1) on the selected biomechanical parameters of muscle gastrocnemius contraction, biochemical indicators of blood and muscle tissue as well as histological changes in rat muscle tissue after chronic alcoholization for 3, 6 and 9 months was studied in detail. Water-soluble C60 fullerenes were shown to reduce the pathological processes development in the muscle apparatus by an average of (35-40)%. In particular, they reduced the time occurrence of fatigue processes in muscle during the long-term development of alcoholic myopathy and inhibited oxidative processes in muscle, thereby preventing its degradation. These findings open up the possibility of using C60 fullerenes as potent antioxidants for the correction of the pathological conditions of the muscle system arising from alcohol intoxication.

5.
BMC Musculoskelet Disord ; 24(1): 606, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491190

RESUMO

BACKGROUND: Being a scavenger of free radicals, C60 fullerenes can influence on the physiological processes in skeletal muscles, however, the effect of such carbon nanoparticles on muscle contractility under acute muscle inflammation remains unclear. Thus, the aim of the study was to reveal the effect of the C60 fullerene aqueous solution (C60FAS) on the muscle contractile properties under acute inflammatory pain. METHODS: To induce inflammation a 2.5% formalin solution was injected into the rat triceps surae (TS) muscle. High-frequency electrical stimulation has been used to induce tetanic muscle contraction. A linear motor under servo-control with embedded semi-conductor strain gauge resistors was used to measure the muscle tension. RESULTS: In response to formalin administration, the strength of TS muscle contractions in untreated animals was recorded at 23% of control values, whereas the muscle tension in the C60FAS-treated rats reached 48%. Thus, the treated muscle could generate 2-fold more muscle strength than the muscle in untreated rats. CONCLUSIONS: The attenuation of muscle contraction force reduction caused by preliminary injection of C60FAS is presumably associated with a decrease in the concentration of free radicals in the inflamed muscle tissue, which leads to a decrease in the intensity of nociceptive information transmission from the inflamed muscle to the CNS and thereby promotes the improvement of the functional state of the skeletal muscle.


Assuntos
Fulerenos , Ratos , Animais , Fulerenos/farmacologia , Ratos Wistar , Água , Músculo Esquelético , Contração Muscular , Dor/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Contração Isométrica
6.
Nanoscale Adv ; 4(23): 5077-5088, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36504750

RESUMO

The development of precision cancer medicine relies on novel formulation strategies for targeted drug delivery to increase the therapeutic outcome. Biocompatible polymer nanoparticles, namely dextran-graft-polyacrylamide (D-g-PAA) copolymers, represent one of the innovative non-invasive approaches for drug delivery applications in cancer therapy. In this study, the star-like D-g-PAA copolymer in anionic form (D-g-PAAan) was developed for pH-triggered targeted drug delivery of the common chemotherapeutic drugs - doxorubicin (Dox) and cisplatin (Cis). The initial D-g-PAA copolymer was synthesized by the radical graft polymerization method, and then alkaline-hydrolyzed to get this polymer in anionic form for further use for drug encapsulation. The acidification of the buffer promoted the release of loaded drugs. D-g-PAAan nanoparticles increased the toxic potential of the drugs against human and mouse lung carcinoma cells (A549 and LLC), but not against normal human lung cells (HEL299). The drug-loaded D-g-PAAan-nanoparticles promoted further oxidative stress and apoptosis induction in LLC cells. D-g-PAAan-nanoparticles improved Dox accumulation and drugs' toxicity in a 3D LLC multi-cellular spheroid model. The data obtained indicate that the strategy of chemotherapeutic drug encapsulation within the branched D-g-PAAan nanoparticle allows not only to realize pH-triggered drug release but also to potentiate its cytotoxic, prooxidant and proapoptotic effects against lung carcinoma cells.

7.
Clin Med Insights Case Rep ; 15: 11795476221125136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159181

RESUMO

Breast cancer might be complicated by distant metastases accompanied by hypercalcemia, but hyperparathyroidism is not commonly considered in the differential diagnosis. We present a case of 38 years old female patient who was diagnosed with ductal breast carcinoma. Eight months after the initial diagnosis the patient was diagnosed with distant bone metastases. However, this diagnosis was reconsidered at follow up, because we identified elevation of PTH 137.2 pg/ml, Ca2+ 1.19 mmol/l, albumin corrected calcium 2.42 mmol/l, 25(OH)D 39.4 nmol/l, indicating hyperparathyroidism. Scintigraphy with 99mTC-sestamibi confirmed parathyroid adenoma. Postoperative histopathology confirmed 1.2 g chief-cell PTA. Two months after the operation both PTH and Ca2+ levels were within the normal ranges. This study emphasizes the importance of considering possible hyperparathyroidism in patients with breast cancer and hypercalcemia. Routine evaluation of PTH is considered as a reasonable test in patients with breast cancer accompanied by bone lesions.

8.
Nanomaterials (Basel) ; 12(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35564261

RESUMO

The development of an effective therapy aimed at restoring muscle dysfunctions in clinical and sports medicine, as well as optimizing working activity in general remains an urgent task today. Modern nanobiotechnologies are able to solve many clinical and social health problems, in particular, they offer new therapeutic approaches using biocompatible and bioavailable nanostructures with specific bioactivity. Therefore, the nanosized carbon molecule, C60 fullerene, as a powerful antioxidant, is very attractive. In this study, a comparative analysis of the dynamic of muscle soleus fatigue processes in rats was conducted using 50 Hz stimulation for 5 s with three consistent pools after intraperitoneal administration of the following antioxidants: C60 fullerene (a daily dose of 1 mg/kg one hour prior to the start of the experiment) and N-acetylcysteine (NAC; a daily dose of 150 mg/kg one hour prior to the start of the experiment) during five days. Changes in the integrated power of muscle contraction, levels of the maximum and minimum contraction force generation, time of reduction of the contraction force by 50% of its maximum value, achievement of the maximum force response, and delay of the beginning of a single contraction force response were analyzed as biomechanical markers of fatigue processes. Levels of creatinine, creatine phosphokinase, lactate, and lactate dehydrogenase, as well as pro- and antioxidant balance (thiobarbituric acid reactive substances, hydrogen peroxide, reduced glutathione, and catalase activity) in the blood of rats were analyzed as biochemical markers of fatigue processes. The obtained data indicate that applied therapeutic drugs have the most significant effects on the 2nd and especially the 3rd stimulation pools. Thus, the application of C60 fullerene has a (50-80)% stronger effect on the resumption of muscle biomechanics after the beginning of fatigue than NAC on the first day of the experiment. There is a clear trend toward a positive change in all studied biochemical parameters by about (12-15)% after therapeutic administration of NAC and by (20-25)% after using C60 fullerene throughout the experiment. These findings demonstrate the promise of using C60 fullerenes as potential therapeutic nanoagents that can reduce or adjust the pathological conditions of the muscular system that occur during fatigue processes in skeletal muscles.

9.
Life (Basel) ; 12(3)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35330083

RESUMO

Biomechanical and biochemical changes in the muscle soleus of rats during imitation of hind limbs unuse were studied in the model of the Achilles tendon rupture (Achillotenotomy). Oral administration of water-soluble C60 fullerene at a dose of 1 mg/kg was used as a therapeutic agent throughout the experiment. Changes in the force of contraction and the integrated power of the muscle, the time to reach the maximum force response, the mechanics of fatigue processes development, in particular, the transition from dentate to smooth tetanus, as well as the levels of pro- and antioxidant balance in the blood of rats on days 15, 30 and 45 after injury were described. The obtained results indicate a promising prospect for C60 fullerene use as a powerful antioxidant for reducing and correcting pathological conditions of the muscular system arising from skeletal muscle atrophy.

10.
Heliyon ; 8(12): e12449, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36590525

RESUMO

C60 fullerene (C60) as a nanocarbon particle, compatible with biological structures, capable of penetrating through cell membranes and effectively scavenging free radicals, is widely used in biomedicine. A protective effect of C60 on the biomechanics of fast (m. gastrocnemius) and slow (m. soleus) muscle contraction in rats and the pro- and antioxidant balance of muscle tissue during the development of muscle fatigue was studied compared to the same effect of the known antioxidant N-acetylcysteine (NAC). C60 and NAC were administered intraperitoneally at doses of 1 and 150 mg kg-1, respectively, daily for 5 days and 1 h before the start of the experiment. The following quantitative markers of muscle fatigue were used: the force of muscle contraction, the level of accumulation of secondary products of lipid peroxidation (TBARS) and the oxygen metabolite H2O2, the activity of first-line antioxidant defense enzymes (superoxide dismutase (SOD) and catalase (CAT)), and the condition of the glutathione system (reduced glutathione (GSH) content and the activity of the glutathione peroxidase (GPx) enzyme). The analysis of the muscle contraction force dynamics in rats against the background of induced muscle fatigue showed, that the effect of C60, 1 h after drug administration, was (15-17)% more effective on fast muscles than on slow muscles. A further slight increase in the effect of C60 was revealed after 2 h of drug injection, (7-9)% in the case of m. gastrocnemius and (5-6)% in the case of m. soleus. An increase in the effect of using C60 occurred within 4 days (the difference between 4 and 5 days did not exceed (3-5)%) and exceeded the effect of NAC by (32-34)%. The analysis of biochemical parameters in rat muscle tissues showed that long-term application of C60 contributed to their decrease by (10-30)% and (5-20)% in fast and slow muscles, respectively, on the 5th day of the experiment. At the same time, the protective effect of C60 was higher compared to NAC by (28-44)%. The obtained results indicate the prospect of using C60 as a potential protective nano agent to improve the efficiency of skeletal muscle function by modifying the reactive oxygen species-dependent mechanisms that play an important role in the processes of muscle fatigue development.

11.
Nanomaterials (Basel) ; 11(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34947764

RESUMO

Single-walled carbon nanotubes (SWCNTs) are characterized by a combination of rather unique physical and chemical properties, which makes them interesting biocompatible nanostructured materials for various applications, including in the biomedical field. SWCNTs are not inert carriers of drug molecules, as they may interact with various biological macromolecules, including ion channels. To investigate the mechanisms of the inhibitory effects of SWCNTs on the muscarinic receptor cation current (mICAT), induced by intracellular GTPγs (200 µM), in isolated mouse ileal myocytes, we have used the patch-clamp method in the whole-cell configuration. Here, we use molecular docking/molecular dynamics simulations and direct patch-clamp recordings of whole-cell currents to show that SWCNTs, purified and functionalized by carboxylation in water suspension containing single SWCNTs with a diameter of 0.5-1.5 nm, can inhibit mICAT, which is mainly carried by TRPC4 cation channels in ileal smooth muscle cells, and is the main regulator of cholinergic excitation-contraction coupling in the small intestinal tract. This inhibition was voltage-independent and associated with a shortening of the mean open time of the channel. These results suggest that SWCNTs cause a direct blockage of the TRPC4 channel and may represent a novel class of TRPC4 modulators.

12.
Materials (Basel) ; 14(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34683705

RESUMO

Effective targeting of metastasis is considered the main problem in cancer therapy. The development of herbal alkaloid Berberine (Ber)-based anticancer drugs is limited due to Ber' low effective concentration, poor membrane permeability, and short plasma half-life. To overcome these limitations, we used Ber noncovalently bound to C60 fullerene (C60). The complexation between C60 and Ber molecules was evidenced with computer simulation. The aim of the present study was to estimate the effect of the free Ber and C60-Ber nanocomplex in a low Ber equivalent concentration on Lewis lung carcinoma cells (LLC) invasion potential, expression of epithelial-to-mesenchymal transition (EMT) markers in vitro, and the ability of cancer cells to form distant lung metastases in vivo in a mice model of LLC. It was shown that in contrast to free Ber its nanocomplex with C60 demonstrated significantly higher efficiency to suppress invasion potential, to downregulate the level of EMT-inducing transcription factors SNAI1, ZEB1, and TWIST1, to unblock expression of epithelial marker E-cadherin, and to repress cancer stem cells-like markers. More importantly, a relatively low dose of C60-Ber nanocomplex was able to suppress lung metastasis in vivo. These findings indicated that сomplexation of natural alkaloid Ber with C60 can be used as an additional therapeutic strategy against aggressive lung cancer.

13.
Sci Rep ; 11(1): 17748, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493768

RESUMO

Based on WHO reports the new SARS-CoV-2 coronavirus is currently widespread all over the world. So far > 162 million cases have been confirmed, including > 3 million deaths. Because of the pandemic still spreading across the globe the accomplishment of computational methods to find new potential mechanisms of virus inhibitions is necessary. According to the fact that C60 fullerene (a sphere-shaped molecule consisting of carbon) has shown inhibitory activity against various protein targets, here the analysis of the potential binding mechanism between SARS-CoV-2 proteins 3CLpro and RdRp with C60 fullerene was done; it has resulted in one and two possible binding mechanisms, respectively. In the case of 3CLpro, C60 fullerene interacts in the catalytic binding pocket. And for RdRp in the first model C60 fullerene blocks RNA synthesis pore and in the second one it prevents binding with Nsp8 co-factor (without this complex formation, RdRp can't perform its initial functions). Then the molecular dynamics simulation confirmed the stability of created complexes. The obtained results might be a basis for other computational studies of 3CLPro and RdRp potential inhibition ways as well as the potential usage of C60 fullerene in the fight against COVID-19 disease.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Fulerenos/farmacologia , Antivirais/uso terapêutico , COVID-19/epidemiologia , COVID-19/virologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/ultraestrutura , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia , Inibidores de Protease de Coronavírus/uso terapêutico , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , RNA-Polimerase RNA-Dependente de Coronavírus/ultraestrutura , Cristalografia por Raios X , Fulerenos/química , Fulerenos/uso terapêutico , Humanos , Simulação de Dinâmica Molecular , Inibidores da Síntese de Ácido Nucleico/química , Inibidores da Síntese de Ácido Nucleico/farmacologia , Inibidores da Síntese de Ácido Nucleico/uso terapêutico , Pandemias/prevenção & controle , RNA Viral/biossíntese , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , SARS-CoV-2/ultraestrutura
14.
Materials (Basel) ; 14(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202610

RESUMO

A new water-soluble thermosensitive star-like copolymer, dextran-graft-poly-N-iso-propilacrylamide (D-g-PNIPAM), was created and characterized by various techniques (size-exclusion chromatography, differential scanning calorimetry, Fourier-transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) spectroscopy). The viability of cancer cell lines (human transformed cervix epithelial cells, HeLa) as a model for cancer cells was studied using MTT and Live/Dead assays after incubation with a D-g-PNIPAM copolymer as a carrier for the drug doxorubicin (Dox) as well as a D-g-PNIPAM + Dox mixture as a function of the concentration. FTIR spectroscopy clearly indicated the complex formation of Dox with the D-g-PNIPAM copolymer. The size distribution of particles in Hank's solution was determined by the DLS technique at different temperatures. The in vitro uptake of the studied D-g-PNIPAM + Dox nanoparticles into cancer cells was demonstrated by confocal laser scanning microscopy. It was found that D-g-PNIPAM + Dox nanoparticles in contrast to Dox alone showed higher toxicity toward cancer cells. All of the aforementioned facts indicate a possibility of further preclinical studies of the water-soluble D-g-PNIPAM particles' behavior in animal tumor models in vivo as promising carriers of anticancer agents.

15.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202899

RESUMO

The biomechanical parameters of muscle soleus contraction in rats and their blood biochemical indicators after the intramuscular administration of water-soluble C60 fullerene at doses of 0.5, 1, and 2 mg/kg 1 h before the onset of muscle ischemia were investigated. In particular, changes in the contraction force of the ischemic muscle soleus, the integrated power of the muscle, the time to achieve the maximum force response, the dynamics of fatigue processes, and the parameters of the transition from dentate to smooth tetanus, levels of creatinine, creatine kinase, lactate and lactate dehydrogenase, and parameters of prooxidant-antioxidant balance (thiobarbituric acid reactive substances, hydrogen peroxide, and reduced glutathione and catalase) were analyzed. The positive therapeutic changes in the studied biomechanical and biochemical markers were revealed, which indicate the possibility of using water-soluble C60 fullerenes as effective prophylactic nanoagents to reduce the severity of pathological conditions of the muscular system caused by ischemic damage to skeletal muscles.


Assuntos
Materiais Biocompatíveis/química , Fulerenos/química , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/patologia , Nanopartículas/química , Substâncias Protetoras/química , Animais , Materiais Biocompatíveis/farmacologia , Biomarcadores/sangue , Fenômenos Biomecânicos , Fenômenos Químicos , Modelos Animais de Doenças , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Ratos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia
16.
Int J Mol Sci ; 22(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067082

RESUMO

The widespread use of glyphosate as a herbicide in agriculture can lead to the presence of its residues and metabolites in food for human consumption and thus pose a threat to human health. It has been found that glyphosate reduces energy metabolism in the brain, its amount increases in white muscle fibers. At the same time, the effect of chronic use of glyphosate on the dynamic properties of skeletal muscles remains practically unexplored. The selected biomechanical parameters (the integrated power of muscle contraction, the time of reaching the muscle contraction force its maximum value and the reduction of the force response by 50% and 25% of the initial values during stimulation) of muscle soleus contraction in rats, as well as blood biochemical parameters (the levels of creatinine, creatine phosphokinase, lactate, lactate dehydrogenase, thiobarbituric acid reactive substances, hydrogen peroxide, reduced glutathione and catalase) were analyzed after chronic glyphosate intoxication (oral administration at a dose of 10 µg/kg of animal weight) for 30 days. Water-soluble C60 fullerene, as a poweful antioxidant, was used as a therapeutic nanoagent throughout the entire period of intoxication with the above herbicide (oral administration at doses of 0.5 or 1 mg/kg). The data obtained show that the introduction of C60 fullerene at a dose of 0.5 mg/kg reduces the degree of pathological changes by 40-45%. Increasing the dose of C60 fullerene to 1 mg/kg increases the therapeutic effect by 55-65%, normalizing the studied biomechanical and biochemical parameters. Thus, C60 fullerenes can be effective nanotherapeutics in the treatment of glyphosate-based herbicide poisoning.


Assuntos
Fulerenos/uso terapêutico , Glicina/análogos & derivados , Contração Muscular/fisiologia , Músculo Esquelético/fisiopatologia , Animais , Antioxidantes/metabolismo , Biomarcadores/sangue , Fenômenos Biomecânicos/efeitos dos fármacos , Catalase/sangue , Glutationa/sangue , Glicina/toxicidade , Peróxido de Hidrogênio/sangue , Contração Muscular/efeitos dos fármacos , Ratos , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Glifosato
17.
Adv Exp Med Biol ; 1352: 159-172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35132600

RESUMO

INTRODUCTION: The emergence of a new member of the Coronaviridae family, which caused the 2020 pandemic, requires detailed research on the evolution of coronaviruses, their structure and properties, and interaction with cells. Modern nanobiotechnologies can address the many clinical challenges posed by the COVID-19 pandemic. In particular, they offer new therapeutic approaches using biocompatible nanostructures with "specific" antiviral activity. Therefore, the nanosized spherical-like molecule (0.72 nm in diameter) composed of 60 carbon atoms, C60 fullerene, is of interest in terms of fighting coronaviruses due to its high biological activity. In here, we aim to evaluate the effectiveness of anticoronavirus action of water-soluble pristine C60 fullerene in the model and in vitro systems. As a model, apathogenic for human coronavirus, we used transmissible gastroenteritis virus of swine (TGEV), which we adapted to the BHK-21 cell culture (kidney cells of a newborn Syrian hamster). METHODS: The shape and size of the particles present in C60 fullerene aqueous colloidal solution (C60FAS) of given concentration, as well as C60FAS stability (value of zeta potential) were studied using microscopic (STM, scanning tunneling microscopy, and AFM, atomic force microscopy) and spectroscopic (DLS, dynamic light scattering) methods. The cytopathic effect of TGEV was determined with the help of a Leica DM 750 microscope and the degree of monolayer changes in cells was assessed. The microscopy of the viral suspension was performed using a high resolution transmission electron microscope (HRTEM; JEM-1230, Japan). Finally, the search for and design of optimal possible complexes between C60 fullerene and target proteins in the structure of SARS-CoV-2 coronavirus, evaluation of their stability in the simulated cellular environment were performed using molecular dynamics and docking methods. RESULTS: It was found that the maximum allowable cytotoxic concentration of C60 fullerene is 37.5 ± 3.0 µg/ml. The investigated C60FAS reduces the titer of coronavirus infectious activity by the value of 2.00 ± 0.08 TCID50/ml. It was shown that C60 fullerene interacts directly with SARS-CoV-2 proteins, such as RdRp (RNA-dependent RNA polymerase) and 3CLpro (3-chymotrypsin-like protease), which is critical for the life cycle of the coronavirus and, thus, inhibits its functional activity. In both cases, C60 fullerene fills the binding pocket and gets stuck there through stacking and steric interactions. CONCLUSION: Pioneer in vitro study to identify the anticoronavirus activity of water-soluble pristine C60 fullerenes indicates that they are highly promising for further preclinical studies, since a significant inhibition of the infectious activity of swine coronavirus of transmissible gastroenteritis in BHK-21 cell culture was found. According to molecular modeling results, it was shown that C60 fullerene can create the stable complexes with 3CLpro and RdRp proteins of SARS-CoV-2 coronavirus and, thus, suppress its functional activity.


Assuntos
COVID-19 , Fulerenos , Animais , Fulerenos/farmacologia , Humanos , Pandemias , SARS-CoV-2 , Suínos , Água
18.
Pharmaceutics ; 12(9)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842595

RESUMO

Excessive production of reactive oxygen species is the main cause of hepatocellular carcinoma (HCC) initiation and progression. Water-soluble pristine C60 fullerene is a powerful and non-toxic antioxidant, therefore, its effect under rat HCC model and its possible mechanisms were aimed to be discovered. Studies on HepG2 cells (human HCC) demonstrated C60 fullerene ability to inhibit cell growth (IC50 = 108.2 µmol), to induce apoptosis, to downregulate glucose-6-phosphate dehydrogenase, to upregulate vimentin and p53 expression and to alter HepG2 redox state. If applied to animals experienced HCC in dose of 0.25 mg/kg per day starting at liver cirrhosis stage, C60 fullerene improved post-treatment survival similar to reference 5-fluorouracil (31 and 30 compared to 17 weeks) and inhibited metastasis unlike the latter. Furthermore, C60 fullerene substantially attenuated liver injury and fibrosis, decreased liver enzymes, and normalized bilirubin and redox markers (elevated by 1.7-7.7 times under HCC). Thus, C60 fullerene ability to inhibit HepG2 cell growth and HCC development and metastasis and to improve animal survival was concluded. C60 fullerene cytostatic action might be realized through apoptosis induction and glucose-6-phosphate dehydrogenase downregulation in addition to its antioxidant activity.

19.
Mol Pharm ; 17(9): 3622-3632, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32673486

RESUMO

Background: C60 fullerenes and their derivatives are actively investigated for the use in neuroscience. Applications of these nanoscale materials require the examination of their interaction with different neural cells, especially with microglia, because these cells, like other tissue resident phagocytes, are the earliest and most sensitive responders to nanoparticles. The aim of this study was to investigate the effect of C60 fullerene and its nanocomplex with doxorubicin (Dox) on the metabolic profile of brain-resident phagocytes-microglia-in vitro. Methods: Resting microglial cells from adult male Wistar rats were used in experiments. Potential C60 fullerene targets in microglial cells were studied by computer simulation. Microglia oxidative metabolism and phagocytic activity were examined by flow cytometry. Griess reaction and arginase activity colorimetric assay were used to explore arginine metabolism. Results: C60 fullerene when used alone did not influence microglia oxidative metabolism and phagocytic activity but shifted arginine metabolism toward the decrease of NO generation. Complexation of C60 fullerene with Dox (C60-Dox) potentiated the ability of the latter to stimulate NO generation. Conclusion: The capability of C60 fullerenes used alone to cause anti-inflammatory shift of microglia arginine metabolism makes them a promising agent for the correction of neuroinflammatory processes involved in neurodegeneration. The potentiating action of C60 fullerene on the immunomodulatory effect of Dox allows us to consider the C60 molecule as an attractive vehicle for this antitumor agent.


Assuntos
Doxorrubicina/química , Doxorrubicina/farmacologia , Fulerenos/química , Metaboloma/efeitos dos fármacos , Microglia/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Masculino , Microglia/metabolismo , Nanopartículas/química , Ratos , Ratos Wistar
20.
Acta Neurobiol Exp (Wars) ; 80(1): 32-37, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32214272

RESUMO

The effect of C60 fullerene aqueous colloid solution (C60FAS) on the intensity of long­lasting (persisting for one hour) rotational movements in non­anesthetized rats was investigated. For this purpose, an experimental hemiparkinsonic animal model was used in the study. Rotational movements in hemiparkinsonic animals were initiated by the intraperitoneal administration of the dopamine receptor agonist apomorphine. It was shown that a preliminary injection of C60FAS (a substance with powerful antioxidant properties) in hemiparkinsonic rats induced distinct changes in animal motor behavior. It was revealed that fullerene­pretreated animals, in comparison with non­pretreated or vehicle­pretreated rats, rotated for 1 h at an approximately identical speed until the end of the experiment, whereas the rotation speed of control rats gradually decreased to 20-30% of the initial value. One can assume that the observed changes in the movement dynamics of the hemiparkinsonic rats after C60FAS pretreatment presumably can be induced by the influence of C60FAS on the dopaminergic system, although the isolated potentiation of the action of apomorphine C60FAS cannot be excluded. Nevertheless, earlier data on the action of C60FAS on muscle dynamics has suggested that C60FAS can activate a protective action of the antioxidant system in response to long­lasting muscular activity and that the antioxidant system in turn may directly decrease fatigue­relate d changes during long­lasting muscular activity.


Assuntos
Antioxidantes/farmacologia , Fulerenos/farmacologia , Atividade Motora/efeitos dos fármacos , Transtornos Parkinsonianos/fisiopatologia , Animais , Apomorfina/farmacologia , Feminino , Fadiga Muscular/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/cirurgia , Ratos , Ratos Wistar , Técnicas Estereotáxicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...