Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38645011

RESUMO

Rubisco is the primary CO2 fixing enzyme of the biosphere yet has slow kinetics. The roles of evolution and chemical mechanism in constraining the sequence landscape of rubisco remain debated. In order to map sequence to function, we developed a massively parallel assay for rubisco using an engineered E. coli where enzyme function is coupled to growth. By assaying >99% of single amino acid mutants across CO2 concentrations, we inferred enzyme velocity and CO2 affinity for thousands of substitutions. We identified many highly conserved positions that tolerate mutation and rare mutations that improve CO2 affinity. These data suggest that non-trivial kinetic improvements are readily accessible and provide a comprehensive sequence-to-function mapping for enzyme engineering efforts.

2.
Nat Commun ; 15(1): 1639, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388493

RESUMO

Recent developments in protein design rely on large neural networks with up to 100s of millions of parameters, yet it is unclear which residue dependencies are critical for determining protein function. Here, we show that amino acid preferences at individual residues-without accounting for mutation interactions-explain much and sometimes virtually all of the combinatorial mutation effects across 8 datasets (R2 ~ 78-98%). Hence, few observations (~100 times the number of mutated residues) enable accurate prediction of held-out variant effects (Pearson r > 0.80). We hypothesized that the local structural contexts around a residue could be sufficient to predict mutation preferences, and develop an unsupervised approach termed CoVES (Combinatorial Variant Effects from Structure). Our results suggest that CoVES outperforms not just model-free methods but also similarly to complex models for creating functional and diverse protein variants. CoVES offers an effective alternative to complicated models for identifying functional protein mutations.


Assuntos
Redes Neurais de Computação , Proteínas , Proteínas/metabolismo , Aminoácidos/química , Mutação
3.
Annu Rev Biochem ; 92: 385-410, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37127263

RESUMO

Carbon fixation is the process by which CO2 is converted from a gas into biomass. The Calvin-Benson-Bassham cycle (CBB) is the dominant carbon-consuming pathway on Earth, driving >99.5% of the ∼120 billion tons of carbon that are converted to sugar by plants, algae, and cyanobacteria. The carboxylase enzyme in the CBB, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), fixes one CO2 molecule per turn of the cycle into bioavailable sugars. Despite being critical to the assimilation of carbon, rubisco's kinetic rate is not very fast, limiting flux through the pathway. This bottleneck presents a paradox: Why has rubisco not evolved to be a better catalyst? Many hypothesize that the catalytic mechanism of rubisco is subject to one or more trade-offs and that rubisco variants have been optimized for their native physiological environment. Here, we review the evolution and biochemistry of rubisco through the lens of structure and mechanism in order to understand what trade-offs limit its improvement. We also review the many attempts to improve rubisco itself and thereby promote plant growth.


Assuntos
Dióxido de Carbono , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese
4.
Nat Biomed Eng ; 6(8): 944-956, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35953650

RESUMO

Rapid nucleic acid testing is central to infectious disease surveillance. Here, we report an assay for rapid COVID-19 testing and its implementation in a prototype microfluidic device. The assay, which we named DISCoVER (for diagnostics with coronavirus enzymatic reporting), involves extraction-free sample lysis via shelf-stable and low-cost reagents, multiplexed isothermal RNA amplification followed by T7 transcription, and Cas13-mediated cleavage of a quenched fluorophore. The device consists of a single-use gravity-driven microfluidic cartridge inserted into a compact instrument for automated running of the assay and readout of fluorescence within 60 min. DISCoVER can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in saliva with a sensitivity of 40 copies µl-1, and was 94% sensitive and 100% specific when validated (against quantitative PCR) using total RNA extracted from 63 nasal-swab samples (33 SARS-CoV-2-positive, with cycle-threshold values of 13-35). The device correctly identified all tested clinical saliva samples (10 SARS-CoV-2-positive out of 13, with cycle-threshold values of 23-31). Rapid point-of-care nucleic acid testing may broaden the use of molecular diagnostics.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , RNA Viral/genética , SARS-CoV-2/genética , Saliva
6.
Nat Chem Biol ; 17(9): 982-988, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34354262

RESUMO

Direct, amplification-free detection of RNA has the potential to transform molecular diagnostics by enabling simple on-site analysis of human or environmental samples. CRISPR-Cas nucleases offer programmable RNA-guided RNA recognition that triggers cleavage and release of a fluorescent reporter molecule, but long reaction times hamper their detection sensitivity and speed. Here, we show that unrelated CRISPR nucleases can be deployed in tandem to provide both direct RNA sensing and rapid signal generation, thus enabling robust detection of ~30 molecules per µl of RNA in 20 min. Combining RNA-guided Cas13 and Csm6 with a chemically stabilized activator creates a one-step assay that can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA extracted from respiratory swab samples with quantitative reverse transcriptase PCR (qRT-PCR)-derived cycle threshold (Ct) values up to 33, using a compact detector. This Fast Integrated Nuclease Detection In Tandem (FIND-IT) approach enables sensitive, direct RNA detection in a format that is amenable to point-of-care infection diagnosis as well as to a wide range of other diagnostic or research applications.


Assuntos
COVID-19/genética , Sistemas CRISPR-Cas/genética , RNA Viral/genética , SARS-CoV-2/genética , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
medRxiv ; 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33791736

RESUMO

Direct, amplification-free detection of RNA has the potential to transform molecular diagnostics by enabling simple on-site analysis of human or environmental samples. CRISPR-Cas nucleases offer programmable RNA-guided recognition of RNA that triggers cleavage and release of a fluorescent reporter molecule1,2, but long reaction times hamper sensitivity and speed when applied to point-of-care testing. Here we show that unrelated CRISPR nucleases can be deployed in tandem to provide both direct RNA sensing and rapid signal generation, thus enabling robust detection of ~30 RNA copies/microliter in 20 minutes. Combining RNA-guided Cas13 and Csm6 with a chemically stabilized activator creates a one-step assay that detected SARS-CoV-2 RNA from nasopharyngeal samples with PCR-derived Ct values up to 29 in microfluidic chips, using a compact imaging system. This Fast Integrated Nuclease Detection In Tandem (FIND-IT) approach enables direct RNA detection in a format amenable to point-of-care infection diagnosis, as well as to a wide range of other diagnostic or research applications.

8.
medRxiv ; 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33354689

RESUMO

Rapid nucleic acid testing is a critical component of a robust infrastructure for increased disease surveillance. Here, we report a microfluidic platform for point-of-care, CRISPR-based molecular diagnostics. We first developed a nucleic acid test which pairs distinct mechanisms of DNA and RNA amplification optimized for high sensitivity and rapid kinetics, linked to Cas13 detection for specificity. We combined this workflow with an extraction-free sample lysis protocol using shelf-stable reagents that are widely available at low cost, and a multiplexed human gene control for calling negative test results. As a proof-of-concept, we demonstrate sensitivity down to 40 copies/µL of SARS-CoV-2 in unextracted saliva within 35 minutes, and validated the test on total RNA extracted from patient nasal swabs with a range of qPCR Ct values from 13-35. To enable sample-to-answer testing, we integrated this diagnostic reaction with a single-use, gravity-driven microfluidic cartridge followed by real-time fluorescent detection in a compact companion instrument. We envision this approach for Diagnostics with Coronavirus Enzymatic Reporting (DISCoVER) will incentivize frequent, fast, and easy testing.

9.
EMBO J ; 39(18): e104081, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32500941

RESUMO

CO2 is converted into biomass almost solely by the enzyme rubisco. The poor carboxylation properties of plant rubiscos have led to efforts that made it the most kinetically characterized enzyme, yet these studies focused on < 5% of its natural diversity. Here, we searched for fast-carboxylating variants by systematically mining genomic and metagenomic data. Approximately 33,000 unique rubisco sequences were identified and clustered into ≈ 1,000 similarity groups. We then synthesized, purified, and biochemically tested the carboxylation rates of 143 representatives, spanning all clusters of form-II and form-II/III rubiscos. Most variants (> 100) were active in vitro, with the fastest having a turnover number of 22 ± 1 s-1 -sixfold faster than the median plant rubisco and nearly twofold faster than the fastest measured rubisco to date. Unlike rubiscos from plants and cyanobacteria, the fastest variants discovered here are homodimers and exhibit a much simpler folding and activation kinetics. Our pipeline can be utilized to explore the kinetic space of other enzymes of interest, allowing us to get a better view of the biosynthetic potential of the biosphere.


Assuntos
Mineração de Dados , Bases de Dados de Ácidos Nucleicos , Ribulose-Bifosfato Carboxilase , Isoenzimas/classificação , Isoenzimas/genética , Ribulose-Bifosfato Carboxilase/classificação , Ribulose-Bifosfato Carboxilase/genética
10.
Biochemistry ; 58(31): 3365-3376, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31259528

RESUMO

Rubisco is the primary carboxylase of the Calvin cycle, the most abundant enzyme in the biosphere, and one of the best-characterized enzymes. On the basis of correlations between Rubisco kinetic parameters, it is widely posited that constraints embedded in the catalytic mechanism enforce trade-offs between CO2 specificity, SC/O, and maximum carboxylation rate, kcat,C. However, the reasoning that established this view was based on data from ≈20 organisms. Here, we re-examine models of trade-offs in Rubisco catalysis using a data set from ≈300 organisms. Correlations between kinetic parameters are substantially attenuated in this larger data set, with the inverse relationship between kcat,C and SC/O being a key example. Nonetheless, measured kinetic parameters display extremely limited variation, consistent with a view of Rubisco as a highly constrained enzyme. More than 95% of kcat,C values are between 1 and 10 s-1, and no measured kcat,C exceeds 15 s-1. Similarly, SC/O varies by only 30% among Form I Rubiscos and <10% among C3 plant enzymes. Limited variation in SC/O forces a strong positive correlation between the catalytic efficiencies (kcat/KM) for carboxylation and oxygenation, consistent with a model of Rubisco catalysis in which increasing the rate of addition of CO2 to the enzyme-substrate complex requires an equal increase in the O2 addition rate. Altogether, these data suggest that Rubisco evolution is tightly constrained by the physicochemical limits of CO2/O2 discrimination.


Assuntos
Modelos Biológicos , Ribulose-Bifosfato Carboxilase/metabolismo , Dióxido de Carbono/metabolismo , Cinética , Oxigênio/metabolismo , Termodinâmica
11.
J Org Chem ; 84(7): 3754-3761, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30855962

RESUMO

The ability of the biopolymers RNA and DNA to store and transfer information is essential to life. Herein, we demonstrate template-directed replication in a set of dimer duplexes that use reversible covalent bonds to form base-pairing interactions. Binary sequence information was encoded as a sequence of aniline and benzaldehyde subunits linked together by a diethynyl benzene backbone. These dimers formed sequence-specific, imine-linked duplexes, which could be separated and used as templates for the synthesis of daughter duplexes with identical sequences.


Assuntos
Compostos de Anilina/química , Benzaldeídos/química , Iminas/química , Pareamento de Bases , DNA/química , Dimerização , Modelos Moleculares , RNA/química , Relação Estrutura-Atividade
12.
J Am Chem Soc ; 140(15): 5171-5178, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29608310

RESUMO

The chemical replication of RNA inside fatty acid vesicles is a plausible step in the emergence of cellular life. On the primitive Earth, simple protocells with the ability to import nucleotides and short oligomers from their environment could potentially have replicated and retained larger genomic RNA oligonucleotides within a spatially defined compartment. We have previously shown that short 5'-phosphoroimidazolide-activated "helper" RNA oligomers enable the nonenzymatic copying of mixed-sequence templates in solution, using 5'-phosphoroimidazolide-activated mononucleotides. Here, we report that citrate-chelated Mg2+, a catalyst of nonenzymatic primer extension, enhances fatty acid membrane permeability to such short RNA oligomers up to the size of tetramers, without disrupting vesicle membranes. In addition, selective permeability of short, but not long, oligomers can be further enhanced by elevating the temperature. The ability to increase the permeability of fatty acid membranes to short oligonucleotides allows for the nonenzymatic copying of RNA templates containing all four nucleotides inside vesicles, bringing us one step closer to the goal of building a protocell capable of Darwinian evolution.


Assuntos
Ácido Cítrico/química , Ácidos Graxos/química , Magnésio/química , RNA/química , Sequência de Bases , Temperatura
13.
Nat Commun ; 8(1): 1705, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167457

RESUMO

Understanding the evolution of a new metabolic capability in full mechanistic detail is challenging, as causative mutations may be masked by non-essential "hitchhiking" mutations accumulated during the evolutionary trajectory. We have previously used adaptive laboratory evolution of a rationally engineered ancestor to generate an Escherichia coli strain able to utilize CO2 fixation for sugar synthesis. Here, we reveal the genetic basis underlying this metabolic transition. Five mutations are sufficient to enable robust growth when a non-native Calvin-Benson-Bassham cycle provides all the sugar-derived metabolic building blocks. These mutations are found either in enzymes that affect the efflux of intermediates from the autocatalytic CO2 fixation cycle toward biomass (prs, serA, and pgi), or in key regulators of carbon metabolism (crp and ppsR). Using suppressor analysis, we show that a decrease in catalytic capacity is a common feature of all mutations found in enzymes. These findings highlight the enzymatic constraints that are essential to the metabolic stability of autocatalytic cycles and are relevant to future efforts in constructing non-native carbon fixation pathways.


Assuntos
Dióxido de Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Açúcares/metabolismo , Adaptação Fisiológica/genética , Biomassa , Metabolismo dos Carboidratos/genética , Ciclo do Carbono/genética , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Evolução Molecular Direcionada , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Técnicas de Inativação de Genes , Genes Bacterianos , Genes Supressores , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Modelos Biológicos , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutação , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fotossíntese/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ribose-Fosfato Pirofosfoquinase/genética , Ribose-Fosfato Pirofosfoquinase/metabolismo
14.
J Am Chem Soc ; 139(5): 1810-1813, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28117989

RESUMO

Achieving efficient nonenzymatic replication of RNA is an important step toward the synthesis of self-replicating protocells that may mimic early forms of life. Despite recent progress, the nonenzymatic copying of templates containing mixed sequences remains slow and inefficient. Here we demonstrate that activating nucleotides with 2-aminoimidazole results in superior reaction kinetics and improved yields of primer extension reaction products. This new leaving group significantly accelerates monomer addition as well as trimer-assisted RNA primer extension, allowing efficient copying of a variety of short RNA templates with mixed sequences.


Assuntos
Imidazóis/química , Nucleotídeos/química , RNA/síntese química , RNA/química
15.
J Am Chem Soc ; 139(2): 571-574, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28055190

RESUMO

Origins of life hypotheses often invoke a transitional phase of nonenzymatic template-directed RNA replication prior to the emergence of ribozyme-catalyzed copying of genetic information. Here, using NMR and ITC, we interrogate the binding affinity of guanosine 5'-monophosphate (GMP) for primer-template complexes when either another GMP, or a helper oligonucleotide, can bind downstream. Binding of GMP to a primer-template complex cannot be significantly enhanced by the possibility of downstream monomer binding, because the affinity of the downstream monomer is weaker than that of the first monomer. Strikingly, GMP binding affinity can be enhanced by ca. 2 orders of magnitude when a helper oligonucleotide is stably bound downstream of the monomer binding site. We compare these thermodynamic parameters to those previously reported for T7 RNA polymerase-mediated replication to help address questions of binding affinity in related nonenzymatic processes.


Assuntos
Guanosina Monofosfato/química , Oligonucleotídeos/química , RNA/química , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Guanosina Monofosfato/metabolismo , Oligonucleotídeos/metabolismo , Termodinâmica , Proteínas Virais/química , Proteínas Virais/metabolismo
16.
Elife ; 52016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27351102

RESUMO

The nonenzymatic replication of RNA is a potential transitional stage between the prebiotic chemistry of nucleotide synthesis and the canonical RNA world in which RNA enzymes (ribozymes) catalyze replication of the RNA genomes of primordial cells. However, the plausibility of nonenzymatic RNA replication is undercut by the lack of a protocell-compatible chemical system capable of copying RNA templates containing all four nucleotides. We show that short 5'-activated oligonucleotides act as catalysts that accelerate primer extension, and allow for the one-pot copying of mixed sequence RNA templates. The fidelity of the primer extension products resulting from the sequential addition of activated monomers, when catalyzed by activated oligomers, is sufficient to sustain a genome long enough to encode active ribozymes. Finally, by immobilizing the primer and template on a bead and adding individual monomers in sequence, we synthesize a significant part of an active hammerhead ribozyme, forging a link between nonenzymatic polymerization and the RNA world.


Assuntos
Oligonucleotídeos/metabolismo , Polimerização , RNA/metabolismo , RNA Catalítico/metabolismo
17.
Chem Commun (Camb) ; 52(39): 6529-32, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27109314

RESUMO

Ribozyme-catalyzed RNA polymerization is inefficient and error prone. Here we demonstrate that two alternative bases, 2-thio-uridine (s(2)U) and 2-thio-ribo-thymidine (s(2)T), improve the rate and fidelity of ribozyme catalyzed nucleotide addition as NTP substrates and as template bases. We also demonstrate the functionality of s(2)U and s(2)T-containing ribozymes.


Assuntos
RNA Catalítico/genética , RNA/genética , Tiouridina/análogos & derivados , Biocatálise , Cinética , RNA/química , RNA Catalítico/química , Transcrição Reversa , Tiouridina/química , Transcrição Gênica
18.
J Am Chem Soc ; 138(12): 3986-9, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-26974265

RESUMO

Phosphoroimidazolides play a critical role in several enzymatic phosphoryl transfer reactions and have been studied extensively as activated monomers for nonenzymatic nucleic acid replication, but the detailed mechanisms of these phosphoryl transfer reactions remain elusive. Some aspects of the mechanism can be deduced by studying the hydrolysis reaction, a simpler system that is amenable to a thorough mechanistic treatment. Here we characterize the transition state of phosphoroimidazolide hydrolysis by kinetic isotope effect (KIE) and linear free energy relationship (LFER) measurements, and theoretical calculations. The KIE and LFER observations are best explained by calculated loose transition structures with extensive scissile bond cleavage. These three-dimensional models of the transition state provide the basis for future mechanistic investigations of phosphoroimidazolide reactions.


Assuntos
Simulação por Computador , Imidazolidinas/química , Modelos Químicos , Hidrólise , Estrutura Molecular , Fosforilação
19.
Nat Struct Mol Biol ; 16(8): 861-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19597483

RESUMO

Characterizing the structural dynamics of the translating ribosome remains a major goal in the study of protein synthesis. Deacylation of peptidyl-tRNA during translation elongation triggers fluctuations of the pretranslocation ribosomal complex between two global conformational states. Elongation factor G-mediated control of the resulting dynamic conformational equilibrium helps to coordinate ribosome and tRNA movements during elongation and is thus a crucial mechanistic feature of translation. Beyond elongation, deacylation of peptidyl-tRNA also occurs during translation termination, and this deacylated tRNA persists during ribosome recycling. Here we report that specific regulation of the analogous conformational equilibrium by translation release and ribosome recycling factors has a critical role in the termination and recycling mechanisms. Our results support the view that specific regulation of the global state of the ribosome is a fundamental characteristic of all translation factors and a unifying theme throughout protein synthesis.


Assuntos
Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Carbocianinas/química , Eletroforese em Gel de Poliacrilamida , Fluorescência , Cinética , Modelos Biológicos , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Ribossomos/química , Ribossomos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...