Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 176(4): e14385, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38956782

RESUMO

The main purpose of this study was to demonstrate that the course of anther development, including post-meiotic maturation, dehiscence and senescence, is ensured by the interdependencies between jasmonic acid (JA) and indole-3-acetic acid (IAA) in yellow lupin (Lupinus luteus L.). The concentration of JA peaked during anther dehiscence when IAA level was low, whereas the inverse relationship was specific to anther senescence. Cellular and tissue localization of JA and IAA, in conjunction with broad expression profile for genes involved in biosynthesis, signalling, response, and homeostasis under different conditions, allowed to complete and define the role of studied phytohormones during late anther development, as well as predict events triggered by them. The development/degeneration of septum and anther wall cells, dehydration of epidermis, and rupture of stomium may involve JA signalling, while the formation of secondary thickening in endothecial cell walls is rather JA independent. The IAA is involved in programmed cell death (PCD)-associated processes during anther senescence but does not exclude its participation in the anther dehiscence processes, mainly related to cell disintegration and degeneration. A detailed understanding of these multistage processes, especially at the level of phytohormonal interplay, can contribute to the effective control of male fertility, potentially revolutionizing the breeding of L. luteus.


Assuntos
Ciclopentanos , Flores , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Lupinus , Oxilipinas , Reguladores de Crescimento de Plantas , Ácidos Indolacéticos/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Lupinus/metabolismo , Lupinus/crescimento & desenvolvimento , Lupinus/efeitos dos fármacos , Flores/metabolismo , Flores/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transdução de Sinais
2.
BMC Plant Biol ; 21(1): 314, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215194

RESUMO

BACKGROUND: Anther dehiscence resulting in the release of pollen grains is tightly regulated in a spatiotemporal manner by various factors. In yellow lupine (Lupinus luteus L.), a species that shows cleistogamy, the anthers split before the flowers open, but the course and regulation of this process are unknown. The specific control of anther development takes place via hormonal pathways, the wide action of which ensures reproductive success. In our previous research concerning flower and early pod development in yellow lupine, we showed that the lowest transcript level of LlDELLA1, a main repressor of gibberellin (GA) signalling, occurs approximately at the time of anther opening; therefore, the main purpose of this study was to precisely investigate the gibberellic acid (GA3)-dependent regulation of the anther dehiscence in this species. RESULTS: In this paper, we showed the specific changes in the yellow lupine anther structure during dehiscence, including secondary thickening in the endothecium by lignocellulosic deposition, enzymatic cell wall breakdown at the septum/stomium and cell degeneration via programmed cell death (PCD), and identified several genes widely associated with this process. The expression profile of genes varied over time, with the most intense mRNA accumulation in the phases prior to or at the time of anther opening. The transcriptional activity also revealed that these genes are highly coexpressed and regulated in a GA-dependent manner. The cellular and tissue localization of GA3 showed that these molecules are present before anther opening, mainly in septum cells, near the vascular bundle and in the endothecium, and that they are subsequently undetectable. GA3 localization strongly correlates with the transcriptional activity of genes related to GA biosynthesis and deactivation. The results also suggest that GA3 controls LlGAMYB expression via an LlMIR159-dependent pathway. CONCLUSIONS: The presented results show a clear contribution of GA3 in the control of the extensive anther dehiscence process in yellow lupine. Understanding the processes underlying pollen release at the hormonal and molecular levels is a significant aspect of controlling fertility in this economically important legume crop species and is of increasing interest to breeders.


Assuntos
Flores/fisiologia , Giberelinas/farmacologia , Lupinus/fisiologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Sequência de Bases , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Simulação por Computador , Flores/efeitos dos fármacos , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/metabolismo , Lupinus/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Int J Mol Sci ; 21(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155757

RESUMO

Precise control of generative organ development is of great importance for the productivity of crop plants, including legumes. Gibberellins (GAs) play a key role in the regulation of flowering, and fruit setting and development. The major repressors of GA signaling are DELLA proteins. In this paper, the full-length cDNA of LlDELLA1 gene in yellow lupine (Lupinus luteus L.) was identified. Nuclear-located LlDELLA1 was clustered in a second phylogenetic group. Further analyses revealed the presence of all conserved motifs and domains required for the GA-dependent interaction with Gibberellin Insensitive Dwarf1 (GID1) receptor, and involved in the repression function of LlDELLA1. Studies on expression profiles have shown that fluctuating LlDELLA1 transcript level favors proper flower and pod development. Accumulation of LlDELLA1 mRNA slightly decreases from the flower bud stage to anther opening (dehiscence), while there is rapid increase during pollination, fertilization, as well as pod setting and early development. LlDELLA1 expression is downregulated during late pod development. The linkage of LlDELLA1 activity with cellular and tissue localization of gibberellic acid (GA3) offers a broader insight into the functioning of the GA pathway, dependent on the organ and developmental stage. Our analyses provide information that may be valuable in improving the agronomic properties of yellow lupine.


Assuntos
Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Lupinus/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Flores/efeitos dos fármacos , Flores/metabolismo , Lupinus/efeitos dos fármacos , Lupinus/metabolismo , Proteínas de Plantas/genética , Proteínas Repressoras/genética , Transdução de Sinais
4.
Genes (Basel) ; 10(10)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618967

RESUMO

In flowering plants, proper development of male generative organs is required for successful sexual reproduction. Stamen primordia arise in the third whorl of floral organs and subsequently differentiate into filaments and anthers. The early phase of stamen development, in which meiosis occurs, is followed by a late developmental phase, which consists of filament elongation coordinated with pollen maturation, anther dehiscence and finally viable pollen grain release. Stamen development and function are modulated by phytohormones, with a key role of gibberellins (GAs) and jasmonates (JAs). Long-term, extensive investigations, mainly involving GA/JA-deficient and GA/JA-response mutants, have led to a better understanding of the hormone-dependent molecular mechanisms of stamen development. In several species, the principal functions of GAs are to stimulate filament elongation through increased cell elongation and to promote anther locule opening. In the GA-dependent regulation of early stamen development, both the tapetum and developing pollen were identified as major targets. JAs mainly control the late stages of stamen development, such as filament elongation, viable pollen formation and anther dehiscence. A hierarchical relationship between GAs and JAs was recognized mainly in the control of late stamen development. By repressing DELLA proteins, GAs modulate the transcriptional activity of JA biosynthesis genes to promote JA production. A high level of JAs induces a complex of transcription factors crucial for normal stamen development.


Assuntos
Ciclopentanos/metabolismo , Flores/genética , Giberelinas/metabolismo , Oxilipinas/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Pólen/genética , Fatores de Transcrição/genética
5.
J Plant Physiol ; 229: 170-174, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30114566

RESUMO

The abscission of plant organs is a phytohormone-controlled process. Our study provides new insight into the involvement of gibberellic acid (GA3) in the functioning of the flower abscission zone (AZ) in yellow lupine (Lupinus luteus L.). Physiological studies demonstrated that GA3 stimulated flower abortion. Additionally, this phytohormone was abundantly presented in the AZ cells of naturally abscised flowers, especially in vascular bundles. Interesting interactions among GA3 and other modulators of flower separation were also investigated. GA3 accumulated after treatment with the ethylene (ET) precursor 1-aminocyclopropane-1-carboxylic acid (ACC). Abscisic acid (ABA) treatment did not cause such an effect. Furthermore, the expression of the newly identified LlGA20ox1 and LlGA2ox1 genes encoding 2-oxoglutarate-dependent dioxygenases fluctuated after ACC or ABA treatment which confirmed the existence of regulatory crosstalk. GA3 appears to cooperate with the ET precursor in the regulation of AZ function in L. luteus flowers; however, the presented mechanism is ABA-independent.


Assuntos
Ácido Abscísico/farmacologia , Flores/metabolismo , Giberelinas/farmacologia , Lupinus/metabolismo , Flores/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lupinus/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA