Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
2.
Asia Pac J Clin Oncol ; 20(1): 81-86, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37635422

RESUMO

BACKGROUND: Molecular genetics serve a critical role in constructing risk stratification for hematological malignancies, but T-cell lymphoma (TCL) still lacks molecular genetic information for supplement risk stratification in predicting the prognosis of TCL patients. In the present study, we characterized the mutation patterns of B-cell leukemia/lymphoma 11B gene (BCL11B) and its prognostic importance in TCL patients. METHODS: BCL11B mutations were characterized based on the data from two datasets, one is from our clinical center (GDPH dataset, n = 79) and the other is from COSMIC dataset (n = 154). RESULTS: The overall mutation rate of BCL11B was 6.4% (15/233) in TCL, and there were no hotspot mutation sites in TCL. Among these mutations, the missense and splice site mutation were significantly prominent. Moreover, TCL patients harboring BCL11B mutations had a favorable overall survival (OS) in our center (GDPH dataset) (adjusted hazard ratio [HR] = .001, p = 0.109), although there were not yet significantly statistical at this point. In addition, TCL patients harboring BCL11B mutation had a longer 5-year restricted mean survival time (RMST) than those without a BCL11B mutation (60 vs. 32 months). Notably, BCL11B mutations were not associated with TCL entities having better prognosis. CONCLUSIONS: BCL11B mutations were associated with favorable clinical outcome for TCL patients; it might be considered as a novel biomarker for TCL prognostic stratification.


Assuntos
Linfoma de Células T Periférico , Linfoma de Células T , Humanos , Proteínas Supressoras de Tumor/genética , Proteínas Repressoras/genética , Mutação , Linfoma de Células T/genética , Fatores de Transcrição
4.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834149

RESUMO

Fluorescence lifetime measurements of blood or plasma offer valuable insights into the microenvironment and molecular interactions of fluorophores, particularly concerning albumin. Neutrophil- and hypoxia-induced oxidative stress in COVID-19 pneumonia patients leads to hyperinflammation, various oxidative modifications of blood proteins, and potential alterations in the fluorescence lifetime of tryptophan-containing proteins, especially albumin. The objective of this study was to investigate the efficacy of time-resolved fluorescence spectroscopy of blood and plasma as a prompt diagnostic tool for the early diagnosis and severity assessment of COVID-19-associated pneumonia. This study examined a cohort of sixty COVID-19 patients with respiratory symptoms. To investigate whether oxidative stress is the underlying cause of the change in fluorescence lifetime, human serum albumin was treated with chloramine T. The time-resolved spectrometer Life Spec II (Edinburgh Instruments Ltd., Livingston, UK), equipped with a sub-nanosecond pulsed 280 nm diode, was used to measure the fluorescence lifetime of blood and plasma. The findings revealed a significant reduction in the fluorescence lifetime of blood (diluted 200 times) and plasma (diluted 20 times) at 360 nm in COVID-19 pneumonia patients compared with their respective values recorded six months post-infection and those of healthy individuals. Significant negative correlations were observed between the mean fluorescence lifetime of blood and plasma at 360 nm and several severity biomarkers and advanced oxidation protein products, while a positive correlation was found with albumin and the albumin-globulin ratio. The time-resolved fluorescence spectroscopy method demonstrates the potential to be used as a preliminary screening technique for identifying patients who are at risk of developing severe complications. Furthermore, the small amount of blood required for the measurements has the potential to enable a rapid fingerstick blood test.


Assuntos
COVID-19 , Humanos , COVID-19/complicações , COVID-19/diagnóstico , Espectrometria de Fluorescência/métodos , Proteínas Sanguíneas , Albuminas , Inflamação , Teste para COVID-19
5.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834401

RESUMO

Several studies have indicated that COVID-19 can lead to alterations in blood rheology, including an increase in red blood cell aggregation. The precise mechanisms behind this phenomenon are not yet fully comprehended. The latest findings suggest that erythrocyte aggregation significantly influences microcirculation, causes the formation of blood clots in blood vessels, and even damages the endothelial glycocalyx, leading to endothelial dysfunction. The focus of this research lies in investigating the cellular factors influencing these changes in aggregation and discussing potential causes and implications in the context of COVID-19 pathophysiology. For this purpose, the aggregation of erythrocytes in a group of 52 patients with COVID-19 pneumonia was examined in a 70 kDa Dextran solution, which eliminates the influence of plasma factors. Using image analysis, the velocities and sizes of the formed aggregates were investigated, determining their porosity. This study showed that the process of erythrocyte aggregation in COVID-19 patients, independent of plasma factors, leads to the formation of more compact, denser, three-dimensional aggregates. These aggregates may be less likely to disperse under circulatory shear stress, increasing the risk of thrombotic events. This study also suggests that cellular aggregation factors can be responsible for the thrombotic disorders observed long after infection, even when plasma factors have normalized. The results and subsequent broad discussion presented in this study can contribute to a better understanding of the potential complications associated with increased erythrocyte aggregation.


Assuntos
COVID-19 , Agregação Eritrocítica , Humanos , Dextranos , Eritrócitos/fisiologia , Plasma
6.
Pathogens ; 12(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37623948

RESUMO

BACKGROUND: Nontuberculous mycobacteria (NTM) are the cause of chronic lung disease called NTM lung disease (NTM-LD). There are about 180 known species of NTM. Nowadays the number of NTM-LD is increasing. OBJECTIVE: To evaluate the clinical significance of NTM isolated from specimens and assess the frequency and clinical relevance of isolation of NTM in the Regional Center of Pulmonology in Bydgoszcz, hospital of Northern Poland. DESIGN: Clinical, radiological, and microbiological data were collected from all patients from whom NTM was isolated between 2013 and 2022. Data were reviewed retrospectively. Diagnostic criteria for NTM-LD published by the American Thoracic Society (ATS) were used to determine clinical relevance. MATERIAL AND METHODS: The study comprised 81,985 clinical specimens submitted for mycobacterial culture in the Department of Microbiology at the Regional Center of Pulmonology in Bydgoszcz between 2013 and 2022. Clinical specimens were processed according to the standard procedure in mycobacteria laboratories in Poland. NTM strains were identified using analysis of mycolic acids by chromatography as well as GenoType NTM-DR, GenoType Mycobacterium AS, and GenoType Mycobacterium CM. RESULTS: There were 395 patients with NTM strains between 2013 and 2022. Out of them, 149 cases met the diagnostic criteria of NTM-LD and were classified as definite cases. M. kansasii (n = 77) was the most common species in the group (51.68%), followed by M. avium complex (n = 46). Patients with NTM-LD were 22-88 years old (median age was 60 years). There were 81 men and 68 women. The most common symptoms were cough, hemoptysis, and fever. Radiological X-ray images were dominated by infiltrative lesions in the upper and middle lobe of the right lung with cavities; the changes were in the upper lobe of the left lung and on both sides of the chest. They were smokers in 61%. The most common concomitant diseases were chronic obstructive pulmonary disease (COPD), diabetes mellitus, pulmonary carcinoma, and human immunodeficiency virus (HIV) infection, and other immunodeficiencies. The most common treatment was isoniazid, ethambutol, rifampicin, and ofloxacin for 18 months with a minimum of 12 months of culture negativity. CONCLUSIONS: NTM-LD infections are present with other pulmonary illnesses and extrapulmonary diseases and may be connected to primary immunologic deficiencies. These diseases concern patients of all ages and have various clinical manifestations. M. kansasii and MAC are the most prevalent NTM isolates among respiratory samples in Northern Poland. In addition, an increase in MAC and a decrease in M. kansasii both in cultivation and the cause of NTM-LD were reported.

7.
Sci Data ; 10(1): 348, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268643

RESUMO

The outbreak of the SARS-CoV-2 pandemic has put healthcare systems worldwide to their limits, resulting in increased waiting time for diagnosis and required medical assistance. With chest radiographs (CXR) being one of the most common COVID-19 diagnosis methods, many artificial intelligence tools for image-based COVID-19 detection have been developed, often trained on a small number of images from COVID-19-positive patients. Thus, the need for high-quality and well-annotated CXR image databases increased. This paper introduces POLCOVID dataset, containing chest X-ray (CXR) images of patients with COVID-19 or other-type pneumonia, and healthy individuals gathered from 15 Polish hospitals. The original radiographs are accompanied by the preprocessed images limited to the lung area and the corresponding lung masks obtained with the segmentation model. Moreover, the manually created lung masks are provided for a part of POLCOVID dataset and the other four publicly available CXR image collections. POLCOVID dataset can help in pneumonia or COVID-19 diagnosis, while the set of matched images and lung masks may serve for the development of lung segmentation solutions.


Assuntos
COVID-19 , Aprendizado Profundo , Radiografia Torácica , Raios X , Humanos , Algoritmos , Inteligência Artificial , COVID-19/diagnóstico por imagem , Teste para COVID-19 , Pneumonia , Polônia , Radiografia Torácica/métodos , SARS-CoV-2
8.
Comput Methods Programs Biomed ; 240: 107684, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37356354

RESUMO

BACKGROUND: When the COVID-19 pandemic commenced in 2020, scientists assisted medical specialists with diagnostic algorithm development. One scientific research area related to COVID-19 diagnosis was medical imaging and its potential to support molecular tests. Unfortunately, several systems reported high accuracy in development but did not fare well in clinical application. The reason was poor generalization, a long-standing issue in AI development. Researchers found many causes of this issue and decided to refer to them as confounders, meaning a set of artefacts and methodological errors associated with the method. We aim to contribute to this steed by highlighting an undiscussed confounder related to image resolution. METHODS: 20 216 chest X-ray images (CXR) from worldwide centres were analyzed. The CXRs were bijectively projected into the 2D domain by performing Uniform Manifold Approximation and Projection (UMAP) embedding on the radiomic features (rUMAP) or CNN-based neural features (nUMAP) from the pre-last layer of the pre-trained classification neural network. Additional 44 339 thorax CXRs were used for validation. The comprehensive analysis of the multimodality of the density distribution in rUMAP/nUMAP domains and its relation to the original image properties was used to identify the main confounders. RESULTS: nUMAP revealed a hidden bias of neural networks towards the image resolution, which the regular up-sampling procedure cannot compensate for. The issue appears regardless of the network architecture and is not observed in a high-resolution dataset. The impact of the resolution heterogeneity can be partially diminished by applying advanced deep-learning-based super-resolution networks. CONCLUSIONS: rUMAP and nUMAP are great tools for image homogeneity analysis and bias discovery, as demonstrated by applying them to COVID-19 image data. Nonetheless, nUMAP could be applied to any type of data for which a deep neural network could be constructed. Advanced image super-resolution solutions are needed to reduce the impact of the resolution diversity on the classification network decision.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , COVID-19/diagnóstico por imagem , Teste para COVID-19 , Pandemias , Artefatos
9.
Respir Med ; 212: 107198, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36931576

RESUMO

BACKGROUND: Amantadine has been proposed as a treatment for COVID-19 because it shows anti-SARS-CoV-2 activity in vitro. However, to date, no controlled study has assessed the safety and efficacy of amantadine in COVID-19. RESEARCH QUESTION: Whether amantadine is effective and safe among patients with different COVID-19 severity classifications. STUDY DESIGN: and Methods: This was multi-centre, randomised, placebo-controlled study.Patients with oxygen saturation ≤94% and no need for high-flow oxygen or ventilatory support were randomly allocated to receive oral amantadine or placebo (1:1) for 10 days in addition to standard care. The primary endpoint was time to recovery assessed over 28 days since randomisation, defined as discharge from hospital or no need for supplemental oxygen. RESULTS: The study was terminated early due to a lack of efficacy after an interim analysis. Final data from 95 patients who received amantadine (mean age, 60.2 years; 65% male; 66% with comorbidities) and 91 patients who received placebo (mean age, 55.8 years; 60% male; 68% with comorbidities) were obtained. The median (95% CI) time to recovery was 10 days both in the amantadine (9-11) and placebo arms (8-11; subhazard ratio = 0.94 [95%CI 0.7-1.3]). The percentage of deaths and percentage of patients who required intensive care at 14 and 28 days did not significantly differ between the amantadine and placebo groups. INTERPRETATION: Adding amantadine to standard care in patients hospitalised with COVID-19 did not increase the likelihood of recovery. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov; No.: NCT04952519; www. CLINICALTRIALS: gov.


Assuntos
COVID-19 , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , SARS-CoV-2 , Método Duplo-Cego , Pacientes , Amantadina/uso terapêutico , Resultado do Tratamento
10.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834942

RESUMO

Transmembrane protein 244 (TMEM244) was annotated to be a member of the TMEM family, which are is a component of cell membranes and is involved in many cellular processes. To date, the expression of the TMEM244 protein has not been experimentally confirmed, and its function has not been clarified. Recently, the expression of the TMEM244 gene was acknowledged to be a diagnostic marker for Sézary syndrome, a rare cutaneous T-cell lymphoma (CTCL). In this study, we aimed to determine the role of the TMEM244 gene in CTCL cells. Two CTCL cell lines were transfected with shRNAs targeting the TMEM244 transcript. The phenotypic effect of TMEM244 knockdown was validated using green fluorescent protein (GFP) growth competition assays and AnnexinV/7AAD staining. Western blot analysis was performed to identify the TMEM244 protein. Our results indicate that TMEM244 is not a protein-coding gene but a long non-coding RNA (lncRNA) that is necessary for the growth of CTCL cells.


Assuntos
Linfoma Cutâneo de Células T , RNA Longo não Codificante , Humanos , Ciclo Celular/genética , Linfoma Cutâneo de Células T/genética , RNA Longo não Codificante/genética , Síndrome de Sézary/genética , Síndrome de Sézary/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
11.
J Am Coll Cardiol ; 81(3): 224-234, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36653090

RESUMO

BACKGROUND: The intensity of inflammation during COVID-19 is related to adverse outcomes. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is involved in low-density lipoprotein receptor homeostasis, with potential influence on vascular inflammation and on COVID-19 inflammatory response. OBJECTIVES: The goal of this study was to investigate the impact of PCSK9 inhibition vs placebo on clinical and laboratory outcomes in patients with severe COVID-19. METHODS: In this double-blind, placebo-controlled, multicenter pilot trial, 60 patients hospitalized for severe COVID-19, with ground-glass opacity pneumonia and arterial partial oxygen pressure to fraction of inspired oxygen ratio ≤300 mm Hg, were randomized 1:1 to receive a single 140-mg subcutaneous injection of evolocumab or placebo. The primary endpoint was death or need for intubation at 30 days. The main secondary endpoint was change in circulating interleukin (IL)-6 at 7 and 30 days from baseline. RESULTS: Patients randomized to receive the PCSK9 inhibitor had lower rates of death or need for intubation within 30 days vs placebo (23.3% vs 53.3%, risk difference: -30%; 95% CI: -53.40% to -6.59%). Serum IL-6 across time was lower with the PCSK9 inhibitor than with placebo (30-day decline: -56% vs -21%). Patients with baseline IL-6 above the median had lower mortality with PCSK9 inhibition vs placebo (risk difference: -37.50%; 95% CI: -68.20% to -6.70%). CONCLUSIONS: PCSK9 inhibition compared with placebo reduced the primary endpoint of death or need for intubation and IL-6 levels in severe COVID-19. Patients with more intense inflammation at randomization had better survival with PCSK9 inhibition vs placebo, indicating that inflammatory intensity may drive therapeutic benefits. (Impact of PCSK9 Inhibition on Clinical Outcome in Patients During the Inflammatory Stage of the COVID-19 [IMPACT-SIRIO 5]; NCT04941105).


Assuntos
COVID-19 , Pró-Proteína Convertase 9 , Humanos , Interleucina-6 , LDL-Colesterol , SARS-CoV-2 , Inflamação , Resultado do Tratamento , Método Duplo-Cego
13.
J Clin Med ; 11(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36079011

RESUMO

A method of rapidly pointing out the risk of developing persistent pulmonary fibrosis from a sample of blood is extraordinarily needed for diagnosis, prediction of death, and post-infection prognosis assessment. Collagen scar formation has been found to play an important role in the lung remodeling following SARS-CoV-2 infection. For this reason, the concentration of collagen degradation products in plasma may reflect the process of lung remodeling and determine the extent of fibrosis. According to our previously published results of an in vitro study, an increase in the concentration of type III collagen degradation products in plasma resulted in a decrease in the fluorescence lifetime of plasma at a wavelength of 450 nm. The aim of this study was to use time-resolved fluorescence spectroscopy to assess pulmonary fibrosis, and to find out if the lifetime of plasma fluorescence is shortened in patients with COVID-19. The presented study is thus far the only one to explore the fluorescence lifetime of plasma in patients with COVID-19 and pulmonary fibrosis. The time-resolved spectrometer Life Spec II with the sub-nanosecond pulsed 360 nm EPLED® diode was used in order to measure the fluorescence lifetime of plasma. The survival analysis showed that COVID-19 mortality was associated with a decreased mean fluorescence lifetime of plasma. The AUC of mean fluorescence lifetime in predicting death was 0.853 (95% CI 0.735−0.972, p < 0.001) with a cut-off value of 7 ns, and with 62% sensitivity and 100% specificity. We observed a significant decrease in the mean fluorescence lifetime in COVID-19 non-survivors (p < 0.001), in bacterial pneumonia patients without COVID-19 (p < 0.001), and in patients diagnosed with idiopathic pulmonary fibrosis (p < 0.001), relative to healthy subjects. Furthermore, these results suggest that the development of pulmonary fibrosis may be a real and serious problem in former COVID-19 patients in the future. A reduction in the mean fluorescence lifetime of plasma was observed in many patients 6 months after discharge. On the basis of these data, it can be concluded that a decrease in the mean fluorescence lifetime of plasma at 450 nm may be a risk factor for mortality, and probably also for pulmonary fibrosis in hospitalized COVID-19 patients.

14.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077496

RESUMO

Oxidative stress induced by neutrophils and hypoxia in COVID-19 pneumonia leads to albumin modification. This may result in elevated levels of advanced oxidation protein products (AOPPs) and advanced lipoxidation end-products (ALEs) that trigger oxidative bursts of neutrophils and thus participate in cytokine storms, accelerating endothelial lung cell injury, leading to respiratory distress. In this study, sixty-six hospitalized COVID-19 patients with respiratory symptoms were studied. AOPPs-HSA was produced in vitro by treating human serum albumin (HSA) with chloramine T. The interaction of malondialdehyde with HSA was studied using time-resolved fluorescence spectroscopy. The findings revealed a significantly elevated level of AOPPs in COVID-19 pneumonia patients on admission to the hospital and one week later as long as they were in the acute phase of infection when compared with values recorded for the same patients 6- and 12-months post-infection. Significant negative correlations of albumin and positive correlations of AOPPs with, e.g., procalcitonin, D-dimers, lactate dehydrogenase, aspartate transaminase, and radiological scores of computed tomography (HRCT), were observed. The AOPPs/albumin ratio was found to be strongly correlated with D-dimers. We suggest that oxidized albumin could be involved in COVID-19 pathophysiology. Some possible clinical consequences of the modification of albumin are also discussed.


Assuntos
Produtos da Oxidação Avançada de Proteínas , COVID-19 , Produtos da Oxidação Avançada de Proteínas/metabolismo , Albuminas/metabolismo , Humanos , Oxirredução , Estresse Oxidativo
15.
Biomark Res ; 10(1): 46, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35831833

RESUMO

T-cell lymphoma (TCL) is an aggressive and genetically heterogeneous malignancy with adverse clinical outcomes; thus, it is worth exploring biomarkers for risk stratification. Previous studies have demonstrated that transmembrane protein 244 gene (TMEM244) is ectopically expressed in Sézary syndrome (SS). In this study, the expression level of TMEM244 and its prognostic value for TCL patients was explored by analyzing RNA-seq data of two large datasets (GSE132550 and GSE113113) containing 129 TCL patients and 13 healthy individuals (HIs) from the Gene Expression Omnibus (GEO) database, the PRJCA002270 dataset containing 124 patients with T-cell acute lymphoblastic leukemia (T-ALL) from the BioProject database, and peripheral blood (PB) samples of 24 TCL and 29 T-ALL patients, as well as 11 normal CD3 + T-cells from our clinical center (JNU). The results suggested that TMEM244 was significantly up-regulated in TCL patients compared with normal CD3 + T-cells or T-ALL in the JNU, GSE132550 and GSE113113 datasets (P < 0.05). However, TMEM244 shows no expression in patients with T-ALL in the JNU-T-ALL and PRJCA002270 datasets. The receiver operating characteristic (ROC) curve analysis indicated that TMEM244 expression had a very high accuracy in diagnosing TCL compared with T-ALL (area under the curve (AUC): 99.4%; P < 0.001). Importantly, high TMEM244 expression was significantly associated with poor OS and shorter 5-year restricted mean survival time (RMST) in TCL patients, especially those treated with chemotherapy. In summary, TMEM244 is also expressed in other types of TCL besides SS, but not in T-ALL. High TMEM244 expression is associated with poor OS in TCL patients, which might be a novel biomarker for prognostic stratification in TCL patients and facilitate the design of novel therapies.

16.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563322

RESUMO

The B-cell CLL/lymphoma 11B gene (BCL11B) plays a crucial role in T-cell development, but its role in T-cell malignancies is still unclear. To study its role in the development of T-cell neoplasms, we generated an inducible BCL11B knockout in a murine T cell leukemia/lymphoma model. Mice, bearing human oncogenes TAL BHLH Transcription Factor 1 (TAL1; SCL) or LIM Domain Only 1 (LMO1), responsible for T-cell acute lymphoblastic leukemia (T-ALL) development, were crossed with BCL11B floxed and with CRE-ER/lox mice. The mice with a single oncogene BCL11Bflox/floxCREtg/tgTAL1tg or BCL11Bflox/floxCREtg/tgLMO1tg were healthy, bred normally, and were used to maintain the mice in culture. When crossed with each other, >90% of the double transgenic mice BCL11Bflox/floxCREtg/tgTAL1tgLMO1tg, within 3 to 6 months after birth, spontaneously developed T-cell leukemia/lymphoma. Upon administration of synthetic estrogen (tamoxifen), which binds to the estrogen receptor and activates the Cre recombinase, the BCL11B gene was knocked out by excision of its fourth exon from the genome. The mouse model of inducible BCL11B knockout we generated can be used to study the role of this gene in cancer development and the potential therapeutic effect of BCL11B inhibition in T-cell leukemia and lymphoma.


Assuntos
Leucemia de Células T , Fatores de Transcrição , Animais , Modelos Animais de Doenças , Proteínas com Domínio LIM/genética , Leucemia de Células T/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética
17.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163338

RESUMO

The SARS-CoV-2 virus is currently the most serious challenge to global public health. Its emergence has severely disrupted the functioning of health services and the economic and social situation worldwide. Therefore, new diagnostic and therapeutic tools are urgently needed to allow for the early detection of the SARS-CoV-2 virus and appropriate treatment, which is crucial for the effective control of the COVID-19 disease. The ideal solution seems to be the use of aptamers-short fragments of nucleic acids, DNA or RNA-that can bind selected proteins with high specificity and affinity. They can be used in methods that base the reading of the test result on fluorescence phenomena, chemiluminescence, and electrochemical changes. Exploiting the properties of aptamers will enable the introduction of rapid, sensitive, specific, and low-cost tests for the routine diagnosis of SARS-CoV-2. Aptamers are excellent candidates for the development of point-of-care diagnostic devices and are potential therapeutic tools for the treatment of COVID-19. They can effectively block coronavirus activity in multiple fields by binding viral proteins and acting as carriers of therapeutic substances. In this review, we present recent developments in the design of various types of aptasensors to detect and treat the SARS-CoV-2 infection.


Assuntos
Aptâmeros de Nucleotídeos/uso terapêutico , Teste para COVID-19/métodos , COVID-19/terapia , Aptâmeros de Nucleotídeos/farmacologia , COVID-19/diagnóstico , COVID-19/economia , COVID-19/virologia , Teste para COVID-19/economia , Terapia Genética/métodos , Terapia Genética/tendências , Humanos , Testes Imediatos/economia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade
19.
J Pers Med ; 11(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946229

RESUMO

Bladder cancer is one of the most common cancers in global statistics. One of the issues associated with this disease is the high incidence of cases with delayed diagnosis and what factors correlate with worse treatment outcomes. A possible reason for this may be the rather limited availability of non-invasive diagnostic tools. This short communication presents a case of a 68 year old male patient after an ineffective therapy, carried on for several years with symptoms commonly associated with prostate overgrowth that masked a carcinoma in situ of the urinary bladder. Implementation of several diagnostic techniques, including urine sediment cytology, immunocytochemistry, the fluorescence in situ hybridisation technique, the Bladder EpiCheck test and whole-genome sequencing, enabled the establishment of a correct diagnosis, implementation of appropriate treatment and provision of patient-friendly monitoring. The described case emphasises the usefulness of cell-based and liquid-based urine tests in bladder cancer diagnostic procedures.

20.
Biomark Res ; 9(1): 17, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663588

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive subtype of leukemia with poor prognosis, and biomarkers and novel therapeutic targets are urgently needed for this disease. Our previous studies have found that inhibition of the B-cell leukemia/lymphoma 11B (BCL11B) gene could significantly promote the apoptosis and growth retardation of T-ALL cells, but the molecular mechanism underlying this effect remains unclear. This study intends to investigate genes downstream of BCL11B and further explore its function in T-ALL cells. We found that PTK7 was a potential downstream target of BCL11B in T-ALL. Compared with the healthy individuals (HIs), PTK7 was overexpressed in T-ALL cells, and BCL11B expression was positively correlated with PTK7 expression. Importantly, BCL11B knockdown reduced PTK7 expression in T-ALL cells. Similar to the effects of BCL11B silencing, downregulation of PTK7 inhibited cell proliferation and induced apoptosis in Molt-4 cells via up-regulating the expression of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and p27. Altogether, our studies suggest that PTK7 is a potential downstream target of BCL11B, and downregulation of PTK7 expression via inhibition of the BCL11B pathway induces growth retardation and apoptosis in T-ALL cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...