Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2313252, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38445772

RESUMO

The development of random lasing (RL) with predictable and controlled properties is an important step to make these cheap optical sources stable and reliable. However, the design of tailored RL characteristics (emission energy, threshold, number of modes) is only obtained with complex photonic structures, while the simplest optical configurations able to tune the RL are still a challenge. This work demonstrates the tuning of the RL characteristics in spin-coated and inkjet-printed tin-based perovskites integrated into a vertical cavity with low quality factor. When the cavity mode is resonant with the photoluminescence (PL) peak energy, standard vertical lasing is observed. More importantly, single mode RL operation with the lowest threshold and a quality factor as high as 1 000 (twenty times the quality factor of the resonator) is obtained if the cavity mode lies above the PL peak energy due to higher gain. These results can have important technological implications toward the development of low-cost RL sources without chaotic behavior.

2.
ACS Energy Lett ; 8(11): 4885-4887, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37969253

RESUMO

For the first time, large-area, flexible organic-inorganic tin perovskite solar modules are fabricated by means of an industry-compatible and scalable blade-coating technique. An 8-cell interconnected mini module with dimensions of 25 cm2 (active area = 8 × 1.5 cm2) reached 5.7% power conversion efficiency under 1000 W/m2 (AM 1.5G) and 9.4% under 2000 lx (white-LED).

3.
J Phys Chem Lett ; 14(28): 6470-6476, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37436849

RESUMO

Recent scientific interest in examining the bandgap evolution of a MAPbI3 hybrid perovskite by applying hydrostatic pressure has mostly focused on a room-temperature tetragonal phase. In contrast, the pressure response of a low-temperature orthorhombic phase (OP) of MAPbI3 has not been explored and understood. In this research, we investigate for the first time how hydrostatic pressure alters the electronic landscape of the OP of MAPbI3. Pressure studies using photoluminescence combined with calculations within density functional theory at zero temperature allowed us to identify the main physical factors affecting the bandgap evolution of the OP of MAPbI3. The negative bandgap pressure coefficient was found to be strongly dependent on the temperature (α120K = -13.3 ± 0.1 meV/GPa, α80K = -29.8 ± 0.1 meV/GPa, and α40K = -36.3 ± 0.1 meV/GPa). Such dependence is related to the changes in the Pb-I bond length and geometry in the unit cell as the atomic configuration approaches the phase transition as well as the increasing phonon contribution to octahedral tilting as the temperature increases.

4.
Phys Chem Chem Phys ; 25(24): 16492-16498, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37306624

RESUMO

Both gallium nitride (GaN) and hybrid organic-inorganic perovskites such as methylammonium lead iodide (MAPbI3) have significantly influenced modern optoelectronics. Both marked a new beginning in the development of important branches in the semiconductor industry. For GaN, it is solid-state lighting and high-power electronics, and for MAPbI3, it is photovoltaics. Today, both are widely incorporated as building blocks in solar cells, LEDs and photodetectors. Regarding multilayers, and thus multi-interfacial construction of such devices, an understanding of the physical phenomena governing electronic transport at the interfaces is relevant. In this study, we present the spectroscopic investigation of carrier transfer across the MAPbI3/GaN interface by contactless electroreflectance (CER) for n-type and p-type GaN. The effect of MAPbI3 on the Fermi level position at the GaN surface was determined which allowed us to draw conclusions about the electronic phenomena at the interface. Our results show that MAPbI3 shifts the surface Fermi level deeper inside the GaN bandgap. Regarding different surface Fermi level positions for n-type and p-type GaN, we explain this as carrier transfer from GaN to MAPbI3 for n-type GaN and in the opposite direction for p-type GaN. We extend our outcomes with a demonstration of a broadband and self-powered MAPbI3/GaN photodetector.

5.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499284

RESUMO

Excited-State Intramolecular Photon Transfer (ESIPT) is known for the geometry-related phenolic and imine groups. The Schiff bases formed upon condensation of salicyl aldehyde and glycine led to the formation of ESIPT models. A series of alkali metal salicyliden glycinates were analyzed by X-ray diffraction of their monocrystals and spectroscopy measurements. The X-ray analysis revealed varied hydration levels between the salts. They adapted trans geometry on the imine groups and mostly anticlinal conformation with the neighboring atoms, which is different from the other structurally-related compounds in literature. Fluorescence of these compounds was found for the crystalline forms only. Protonation of the imine nitrogen atom and further proton distribution was consistent with the ESIPT theory, which also explained the observed fluorescence with the highest Stokes shift of 10,181 cm-1 and 10.1% of fluorescence quantum yield for the sodium salt.


Assuntos
Prótons , Bases de Schiff , Bases de Schiff/química , Conformação Molecular , Fótons , Fenômenos Químicos , Iminas
6.
ACS Appl Mater Interfaces ; 14(22): 25861-25877, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35584201

RESUMO

Charge transport properties in single-walled carbon nanotubes (SWCNTs) can be significantly modified through doping, tuning their electrical and thermoelectric properties. In our study, we used more than 40 nitrogen-bearing compounds as dopants and determined their impact on the material's electrical conductivity. The application of nitrogen compounds of diverse structures and electronic configurations enabled us to determine how the dopant nature affects the SWCNTs. The results reveal that the impact of these dopants can often be anticipated by considering their Hammett's constants and pKa values. Furthermore, the empirical observations supported by first-principles calculations indicate that the doping level can be tuned not only by changing the type and the concentration of dopants but also by varying the orientation of nitrogen compounds around SWCNTs.

7.
J Phys Chem C Nanomater Interfaces ; 125(49): 27344-27353, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-35116086

RESUMO

The synthesis and characterization of a family of indene-C60 adducts obtained via Diels-Alder cycloaddition [4 + 2] are reported. The new C60 derivatives include indenes with a variety of functional groups. These adducts show lowest unoccupied molecular orbital energy levels to be at the right position to consider these compounds as electron-transporting materials for planar heterojunction perovskite solar cells. Selected derivatives were applied into inverted (p-i-n configuration) perovskite device architectures, fabricated on flexible polymer substrates, with large active areas (1 cm2). The highest power conversion efficiency, reaching 13.61%, was obtained for the 6'-acetamido-1',4'-dihydro-naphtho[2',3':1,2][5,6]fullerene-C60 (NHAc-ICMA). Spectroscopic characterization was applied to visualize possible passivation effects of the perovskite's surface induced by these adducts.

8.
Eur J Med Chem ; 211: 113086, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33348236

RESUMO

The last 30 years of gadolinium-based "static" MRI contrast agents motivated to investigate bioresponsive agents with endogenous paramagnets. Iron(III) chelated by N,O-aminophenol skeleton of high versatility, and tuning potential was studied. The two-step convenient route of the ligand is characterized by high selectivity and allows for building a tunable chelate system. Functionalization with galactose endows a bioresponsive character sensitive to the enzyme activity. Direct relaxometric measurements of the resulting complexes revealed extremely high relaxivity of 5.62 mmol/dm3·s-1 comparable to classic gadolinium complexes. Enzymatic hydrolysis leads to relaxivity change by over 80%. Phantom MRI studies prove the bioresponsive character by contras percentage change within the range 40-275%. Cytotoxicity studies showed 70-90% viability of HeLa cells of the iron complexes. Proposed iron-based chelates with galactosidase-sensitive fragment express unequivocal relaxivity and MRI contras change and good biocompatibility. Therefore, these complexes are a promising step towards modern, bioresponsive MRI contrast agents with a "human-friendly" metal.


Assuntos
Meios de Contraste/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Células HeLa , Humanos
9.
Sci Rep ; 10(1): 19877, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199740

RESUMO

Single-walled carbon nanotubes (SWCNTs) have been modified with ester groups using typical organic radical chemistry. Consequently, traps for mobile excitons have been created, which enhanced the optical properties of the material. The proposed methodology combines the benefits of mainstream approaches to create luminescent defects in SWCNTs while it simultaneously avoids their limitations. A step change was achieved when the aqueous medium was abandoned. The selection of an appropriate organic solvent enabled much more facile modification of SWCNTs. The presented technique is quick and versatile as it can engage numerous reactants to tune the light emission capabilities of SWCNTs. Importantly, it can also utilize SWCNTs sorted by chirality using conjugated polymers to enhance their light emission capabilities. Such differentiation is conducted in organic solvents, so monochiral SWCNT can be directly functionalized using the demonstrated concept in the same medium without the need to redisperse the material in water.

10.
Org Biomol Chem ; 18(35): 6935-6948, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32936176

RESUMO

Synthesis of the novel thiophenyl carbazole phosphoramidite DNA building block 5 was accomplished in four steps using a Suzuki-Miyaura cross-coupling reaction from the core carbazole and it was seamlessly accommodated into a 9-mer DNA-based oligonucleotide by incorporation at the flanking 5'-end in combination with a central insertion of an LNA-T nucleotide. The carbazole-containing oligonucleotide was combined in different duplex hybrids, which were characterized by thermal denaturation, circular dichroism and fluorescence studies. The carbazole monomer modulates the duplex stability in various ways. Thus, monomer Z increased the thermal stability of the 9-mer towards the complementary 9-mer/15-mer DNA duplex by 4.2 °C. Furthermore, indications of its intercalation into the duplex were obtained by modeling studies and robust decreases in fluorescence emission intensities upon duplex formation. In contrast, no clear intercalating tendency was corroborated for monomer Z within the DNA/RNA hybrid duplex as indicated by moderate quenching of the fluorescence and similar duplex thermal stabilities relative to the corresponding control duplex. The recognition efficiencies of the carbazole modified oligonucleotide toward single nucleotide mismatches were studied with two 15-mer model targets (DNA and RNA). For both systems, mismatches positioned at the juxtaposition of the carbazole monomer showed pronounced deceases in thermal denaturation temperature. Steady-state fluorescence emission studies of all mismatched duplexes with incorporation of Z monomer typically displayed efficient fluorescence quenching.


Assuntos
Oligonucleotídeos
11.
Molecules ; 25(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164384

RESUMO

Salens, as chelating, double Schiff base ligands, are an important group utilized in transition metal catalysis. They have been used to build interesting functional metal-organic frameworks (MOFs). However, salens interacting with amino acids have also found applications in receptors. Here, we intended to form a "green" glycine-derived salen fragment, but the available literature data were contradictory. Therefore, we optimized the synthetic conditions and obtained the desired product as two different crystallographic polymorphs (orthorhombic Pcca and monoclinic P21/c space groups). Their structures differ in conformation at the glycine moiety, and the monoclinic form contains additional, disordered water molecules. Despite the high stability of Schiff bases, these newly obtained compounds hydrolyze in aqueous media, the process being accelerated by metal cations. These studies, accompanied by mechanistic considerations and solid-state moisture and thermal analysis, clarify the structure and behavior of this amino acid Schiff base and shed new light on the role of water in its stability.


Assuntos
Glicina/química , Bases de Schiff/química , Água/química , Aminoácidos/química , Catálise , Quelantes/química , Complexos de Coordenação/química , Ligantes
12.
J Org Chem ; 84(4): 2287-2296, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30661359

RESUMO

A copper-catalyzed iodination of carbazoles has been developed. Barluenga's reagent IPy2BF4 is used to generate a soft electrophilic halonium species for the iodination of the carbazoles. This report represents the first concept of copper-catalyst-promoted electrophilic halogenation of carbazoles. We demonstrated numerous applications of this methodology synthesizing diverse carbazole derivatives, i.e., both electron-rich and electron-deficient systems.

13.
Int J Nanomedicine ; 10: 3581-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25999719

RESUMO

Iron-filled multiwall carbon nanotubes (Fe@MWCNTs) were functionalized toward a variety of potential magnetic resonance imaging contrast agents. Oxidized Fe@MWNCTs were covered with PEG5000 via direct esterification or using acyl chloride derivatives. Alternatively, the latter were functionalized with an aminophenol ligand (Fe@O-MWCNT-L). Moreover, pristine Fe@MWCNTs were functionalized with N-phenylaziridine groups (Fe@f-MWCNT) via [2+1] cycloaddition of nitrene. All of these chemically modified nanotubes served as a vehicle for anchoring Fe(3+) ions. The new hybrids--Fe(III)/Fe@(f-/O-)MWCNTs--containing 6%-14% of the "tethered" Fe(3+) ions were studied in terms of the acceleration of relaxation of water protons in nuclear magnetic resonance. The highest transverse relaxivity r2=63.9±0.9 mL mg(-1) s(-1) was recorded for Fe(III)/Fe@O-MWCNT-L, while for Fe(III)/Fe@f-MWCNT, with r2=57.9±2.9 mL mg(-1) s(-1), the highest impact of the anchored Fe(III) ions was observed. The T1/T2 ratio of 30-100 found for all of the nanotube hybrids presented in this work is a very important factor for their potential application as T2 contrast agents. Increased stability of the hybrids was confirmed by ultraviolet-visible spectrophotometry.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Nanotubos de Carbono/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...