Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36432944

RESUMO

Polymer matrix nanocomposites are widely studied because of the versatility of their physical and mechanical properties. When these properties are present simultaneously, responding at relative stimuli, multifunctional performance is achieved. In this study, hybrid nanocomposites of SrFe12O19 and BaTiO3 ceramic particles dispersed in an epoxy resin matrix were fabricated and characterized. The content of SrFe12O19 was varying, while the amount of BaTiO3 was kept constant. The successful fabrication of the nanocomposites and the fine dispersion of the ceramic particles was verified via the morphological and structural characterization carried out with X-ray Diffraction patterns and Scanning Electron Microscopy images. Dielectric response and related relaxation phenomena were studied by means of Broadband Dielectric Spectroscopy. Dielectric permittivity augments with filler content, while the recorded relaxations, with descending relaxation time, are: (i) interfacial polarization, (ii) glass-to-rubber transition, (iii) intermediate dipolar effect, and (iv) re-orientation of polar-side groups of the main polymer chain. SrFe12O19 nanoparticles induce magnetic properties to the nanocomposites, which alter with the magnetic filler content. Static and dynamic mechanical response improves with filler content. Thermogravimetric analysis shown that ceramic particles are beneficial to the nanocomposites' thermal stability. Glass transition temperature, determined via Differential Scanning Calorimetry, was found to slightly vary with filler content, in accordance with the results from dynamic mechanical and dielectric analysis, indicating the effect of interactions occurring between the constituents. Examined systems are suitable for energy storing/retrieving.

2.
Molecules ; 27(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296586

RESUMO

In this work, UV-curable resin poly (ethylene glycol) diacrylate (PEGDA) was reinforced with three different types of nanofillers: pristine graphene (G), multiwalled carbon nanotubes (MWNTs), and a hybrid of MWNTs and graphene 70/30 in mass ratio (Hyb). PEGDA was mixed homogenously with the nanofiller oligomer by shear mixing and then photopolymerized, affording thin, stable films. The thermomechanical properties of the afforded nanocomposites indicated the superior reinforcing ability of pristine graphene compared with MWNTs and an intermediate behavior of the hybrid.


Assuntos
Grafite , Nanocompostos , Nanotubos de Carbono , Polietilenoglicóis
3.
Materials (Basel) ; 15(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269016

RESUMO

In this study, hybrid nanocomposites consisting of Fe3O4/BaTiO3/epoxy resin were prepared with varying amounts of filer content. Structural and morphological characterization, conducted via X-Ray Diffraction patterns and Scanning Electron Microscopy images, revealed the successful fabrication of composites and fine dispersion of inclusions. Thermomechanical properties are studied via Differential Scanning Calorimetry, Thermogravimetric Analysis, Dynamic Mechanical Analysis and static mechanical tests. Hybrid composites exhibit enhanced thermal stability and improved mechanical response. Indicatively, Young's modulus, tensile strength and fracture toughness increase from 1.26 GPa, 22.25 MPa, and 3.03 kJ/m3 for the neat epoxy to 1.39 GPa, 45.73 MPa, and 41.08 kJ/m3 for the composites with 20 or 15 parts per hundred resin per mass (phr) of Fe3O4, respectively. Electrical behavior is investigated via Broadband Dielectric Spectroscopy and ac conductivity measurements. The real part of dielectric permittivity reaches the value of 11.11 at 30 °C for the composite with 40 phr of Fe3O4. The ability to store and retrieve electric energy on the nanocomposites is examined with the following parameters: the filler content and the applied voltage under dc conditions. Retrieved energy reaches 79.23% of the stored one, for the system with 15 phr of Fe3O4. Magnetic response is studied via a Vibrating Sample Magnetometer. Magnetic saturation, for the system with the highest magnetic filler content, obtains the value of 25.38 Am2/kg, while pure magnetic powder attains the value of 86.75 Am2/kg. Finally, the multifunctional performance of the nanocomposites is assessed regarding all the exerted stimuli and the optimum behavior is discussed.

4.
Molecules ; 25(11)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527060

RESUMO

BaTiO3 is one of the most widely used ceramic components in capacitor formulation due to its exceptional ferroelectric properties. The structural transition from the ferroelectric tetragonal to the paraelectric cubic phase has been studied in both nano- and micro-BaTiO3 particles. Several experimental techniques were employed for characterization purposes (X-ray diffraction-XRD, laser Raman spectroscopy-LRS, differential scanning calorimetry-DSC and broadband dielectric spectroscopy-BDS). All gave evidence for the structural transition from the polar tetragonal to the non-polar cubic phase in both nano- and micro-BaTiO3 particles. Variation of Full Width at Half Maximum (FWHM) with temperature in XRD peaks was employed for the determination of the critical Curie temperature (Tc). In micro-BaTiO3 particles (Tc) lies close to 120 °C, while in nanoparticles the transition is complicated due to the influence of particles' size. Below (Tc) both phases co-exist in nanoparticles. (Tc) was also determined via the temperature dependence of FWHM and found to be 115 °C. DSC, LRS and BDS provided direct results, indicating the transition in both nano- and micro-BaTiO3 particles. Finally, the 15 parts per hundred resin per weight (phr) BaTiO3/epoxy nanocomposite revealed also the transition through the peak formation at approximately 130 °C in the variation of FWHM with temperature. The present work introduces, for the first time, a qualitative tool for the determination and study of the ferroelectric to paraelectric structural transition in both nano- and micro-ferroelectric particles and in their nanocomposites. Moreover, its novelty lies on the effect of crystals' size upon the ferroelectric to the paraelectric phase transition and its influence on physical properties of BaTiO3.


Assuntos
Compostos de Bário/química , Eletrônica , Compostos de Epóxi/química , Nanocompostos/química , Nanopartículas/química , Termodinâmica , Titânio/química , Tamanho da Partícula , Transição de Fase , Análise Espectral Raman , Temperatura
5.
Materials (Basel) ; 12(18)2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533293

RESUMO

In this study nanocomposites consisting of an epoxy resin and ceramic zinc ferrite nanoparticles have been successfully developed and investigated morphologically and structurally by means of scanning electron microscopy (SEM) images and X-ray diffraction (XRD) spectra. The thermal properties of the nanocomposites were studied via differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The thermomechanical characterization of the fabricated nanocomposites was studied via dynamic mechanical analysis (DMA) and the magneto-dielectric response was assessed by means of a broadband dielectric spectroscopy (BDS) and by employing a superconducting quantum interference device (SQUID) magnetometer. Data analysis demonstrates that the incorporation of nanoinclusions into the matrix improves both the thermomechanical and the dielectric properties of the systems, as indicated by the increase of the storage modulus, the real part of dielectric permittivity and conductivity values with filler content, while at the same time induces magnetic properties into the matrix. Zinc ferrite nanoparticles and their respective nanocomposites exhibit superparamagnetic behavior at room temperature. Three relaxations were recorded in the dielectric spectra of all systems; originating from the filler and the polymer matrix, namely interfacial polarization, glass to rubber transition of the polymer matrix and the reorientation of small polar side groups of the polymer chain.

6.
Biomed Res Int ; 2019: 7574635, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016196

RESUMO

The effect of an electric field within specific intensity limits on the activity of human cells has been previously investigated. However, there are a considerable number of factors that influence the in vitro development of cell populations. In biocompatibility studies, the nature of the substrate and its topography are decisive in osteoblasts bone cells development. Further on, electrical field stimulation may activate biochemical paths that contribute to a faster, more effective self-adjustment and proliferation of specific cell types on various nanosubstrates. Within the present research, an electrical stimulation device has been manufactured and optimum values of parameters that led to enhanced osteoblasts activity, with respect to the alkaline phosphatase and total protein levels, have been found. Homogeneous electric field distribution induced by a highly organized titanium dioxide nanotubes substrate had an optimum effect on cell response. Specific substrate topography in combination with appropriate electrical stimulation enhanced osteoblasts bone cells capacity to self-adjust the levels of their specific biomarkers. The findings are of importance in the future design and development of new advanced orthopaedic materials for hard tissue replacement.


Assuntos
Materiais Biocompatíveis/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/fisiologia , Osteócitos/efeitos dos fármacos , Osteócitos/fisiologia , Fosfatase Alcalina/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Estimulação Elétrica/métodos , Feminino , Humanos , Pessoa de Meia-Idade , Nanotubos , Osteoblastos/metabolismo , Osteócitos/metabolismo , Propriedades de Superfície/efeitos dos fármacos , Titânio/farmacologia
7.
Langmuir ; 24(20): 11489-96, 2008 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-18823097

RESUMO

The preparation of magnetic iron oxide colloids directly from the coprecipitation of Fe (2+) and Fe (3+) species at different temperatures may lead to crystallites of higher size as the temperature of the reaction increases. On the other hand, dynamic light scattering investigations and dielectric measurements rather point to the similar colloidal size of the entities existing in their aqueous or solid-state dispersions, irrespective of the size of the primary nanocrystallites. Significant enhancement of the stability of the colloids, even in the presence of high electrolyte concentrations, is furnished after the addition of relatively small amounts of poly(vinyl alcohol), and the stabilization mechanism is discussed in terms of the various forces participating in the system. The experimental results suggest that the increased colloidal stability is triggered from the particles' decrease of velocity rather than from steric (entropic) effects originating from polymer absorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...