Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37447933

RESUMO

The article discusses the practical application of the method of electromagnetic non-destructive investigation of austenitic materials. To identify and evaluate deep artificial defects, the sweep-frequency eddy current method with harmonic excitation is used. The objects of interest are the surface electric-discharged machined notches, with a defined geometry, fabricated in a plate with a thickness of 30 mm. An innovative eddy current probe with a separate excitation and detection circuit is used for the investigation. The achieved results clearly demonstrate the robustness and potential of the method, especially for deep defects in thick material. By using the fifth probe in connection with the frequency sweeping of eddy currents, it is possible to reliably detect artificial defects up to 24 ± 0.5 mm deep by using low-frequency excitation signals. An important fact is that the measuring probe does not have to be placed directly above the examined defect. The experimental results achieved are presented and discussed in this paper. The conducted study can serve, for example, as an input database of defect signals with a defined geometry to increase the convergence of learning networks and for the prediction of the geometry of real (fatigue and stress-corrosion) defects.


Assuntos
Placas Ósseas , Eletricidade , Humanos , Bases de Dados Factuais , Fadiga , Aprendizagem
2.
Sensors (Basel) ; 23(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36850949

RESUMO

The article's subject is the investigation of electromagnetic fields (EMF) of the microwave frequency band in a typical human living environment, especially in shielded areas. The point of view of electromagnetic field presence in the environment with the rapid increase in the level of the electromagnetic background is currently an essential point concerning population protection against the potential adverse effects of such EMFs. The authors focus on actual measurements, especially in shielded spaces frequently used in everyday life, such as elevator cabins and cars. The goal is a quantitative evaluation of the distribution of specific vector quantities of the EM field and a comparison with the currently valid hygiene standards. Measured values in shielded spaces show elevated levels in contrast to the open space. However, the values do not exceed limits set by considering the thermal effect on living tissues.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Campos Eletromagnéticos , Humanos , Campos Eletromagnéticos/efeitos adversos , Micro-Ondas , Automóveis , Elevadores e Escadas Rolantes
3.
Sensors (Basel) ; 22(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501824

RESUMO

Investigation of the intrinsic magnetic field of austenitic biomaterial specimens after various heat-treatment processes and mechanical deformation is a matter in this study. Both heat-treatment and mechanical deformation influences are under investigation. A new approach incorporates innovative solutions with the goal to increase the resolution of gained signals in contrast to conventional methods. The proposed procedure was tested on real material specimens. A magnetic field sensor (fluxgate type) was used for this purpose. The presented results clearly show that gained signals can be increased when the appropriate probe instrumentation is used, and the characteristics are further mathematically processed.


Assuntos
Materiais Biocompatíveis , Aço Inoxidável , Campos Magnéticos
4.
Sensors (Basel) ; 22(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080817

RESUMO

The presented study discusses the possible disturbing effects of the electromagnetic field of antennas used in mobile phones or WiFi technologies on the pacemaker in the patient's body. This study aims to obtain information on how the thickness of skin layers (such as the thickness of the hypodermis) can affect the activity of a pacemaker exposed to a high-frequency electromagnetic field. This study describes the computational mathematical analysis and modeling of the heart pacemaker inserted under the skin exposed to various electromagnetic field sources, such as a PIFA antenna and a tuned dipole antenna. The finite integration technique (FIT) for a pacemaker model was implemented within the commercially available CST Microwave simulation software studio. Likewise, the equations that describe the mathematical relationship between the subcutaneous layer thickness and electric field according to different exposures of a tuned dipole and a PIFA antenna are used and applied for training a neural network. The main output of this study is the creation of a mathematical model and a multilayer feedforward neural network, which can show the dependence of the thickness of the hypodermis on the size of the electromagnetic field, from the simulated data from CST Studio.


Assuntos
Telefone Celular , Marca-Passo Artificial , Simulação por Computador , Campos Eletromagnéticos , Humanos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...