Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 12(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35203890

RESUMO

The search for a biological marker predicting the future failure or success of electroconvulsive therapy (ECT) remains highly challenging for patients with treatment-resistant depression. Evidence suggests that Brain-Derived Neurotrophic Factor (BDNF), a protein known to be involved in brain plasticity mechanisms, can play a key role in both the clinical efficacy of ECT and the pathophysiology of depressive disorders. We hypothesized that mature BDNF (mBDNF), an isoform of BDNF involved in the neural plasticity and survival of neural networks, might be a good candidate for predicting the efficacy of ECT. Total BDNF (tBDNF) and mBDNF levels were measured in 23 patients with severe treatment-resistant depression before (baseline) they received a course of ECT. More precisely, tBDNF and mBDNF measured before ECT were compared between patients who achieved the criteria of remission after the ECT course (remitters, n = 7) and those who did not (non-remitters, n = 16). We found that at baseline, future remitters displayed significantly higher mBDNF levels than future non-remitters (p = 0.04). No differences were observed regarding tBDNF levels at baseline. The multiple logistic regression model controlled for age and sex revealed that having a higher baseline mBDNF level was significantly associated with future remission after ECT sessions (odd ratio = 1.38; 95% confidence interval = 1.07-2.02, p = 0.04). Despite the limitations of the study, current findings provide additional elements regarding the major role of BDNF and especially the mBDNF isoform in the clinical response to ECT in major depression.

2.
Brain Sci ; 11(5)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069556

RESUMO

Although transcranial direct current stimulation (tDCS) shows promise as a treatment for auditory verbal hallucinations in patients with schizophrenia, mechanisms through which tDCS may induce beneficial effects remain unclear. Evidence points to the involvement of neuronal plasticity mechanisms that are underpinned, amongst others, by brain-derived neurotrophic factor (BDNF) in its two main forms: pro and mature peptides. Here, we aimed to investigate whether tDCS modulates neural plasticity by measuring the acute effects of tDCS on peripheral mature BDNF levels in patients with schizophrenia. Blood samples were collected in 24 patients with schizophrenia before and after they received a single session of either active (20 min, 2 mA, n = 13) or sham (n = 11) frontotemporal tDCS with the anode over the left prefrontal cortex and the cathode over the left temporoparietal junction. We compared the tDCS-induced changes in serum mature BDNF (mBDNF) levels adjusted for baseline values between the two groups. The results showed that active tDCS was associated with a significantly larger decrease in mBDNF levels (mean -20% ± standard deviation 14) than sham tDCS (-8% ± 21) (F = 5.387; p = 0.030; η2 = 0.205). Thus, mature BDNF may be involved in the beneficial effects of frontotemporal tDCS observed in patients with schizophrenia.

3.
Sci Rep ; 8(1): 4133, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29515172

RESUMO

Auditory verbal hallucinations (AVH) in patients with schizophrenia are linked to abnormalities within a large cerebral network including frontal and temporal regions. Whilst abnormalities of frontal speech production and temporal speech perception regions have been extensively studied, alterations of the dorsolateral prefrontal cortex (DLPFC), a region critically involved in the pathophysiology of schizophrenia, have rarely been studied in relation to AVH. Using 1.5 T proton magnetic resonance spectroscopy, this study examined the relationship between right and left DLPFCs N-AcetylAspartate (NAA) levels and the severity of AVH in patients with schizophrenia. Twenty-seven male patients with schizophrenia were enrolled in this study, 15 presented daily treatment-resistant AVH (AVH+) and 12 reported no AVH (no-AVH). AVH+ patients displayed higher NAA levels in the right DLPFC than no-AVH patients (p = 0.033). In AVH+ patients, NAA levels were higher in the right DLPFC than in the left (p = 0.024). No difference between the right and left DLPFC was observed in no-AVH patients. There was a positive correlation between NAA levels in the right DLPFC and the severity of AVH (r = 0.404, p = 0.037). Despite limited by magnetic field strength, these results suggest that AVH may be associated with increased NAA levels in the right DLPFC in schizophrenia.


Assuntos
Ácido Aspártico/análogos & derivados , Alucinações/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Esquizofrenia/metabolismo , Percepção da Fala , Lobo Temporal/metabolismo , Adulto , Ácido Aspártico/metabolismo , Alucinações/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Esquizofrenia/patologia , Lobo Temporal/patologia
4.
Neuroimage Clin ; 12: 970-975, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27995063

RESUMO

Auditory verbal hallucinations (AVH) of schizophrenia are associated with a disrupted connectivity between frontal and temporoparietal language areas. We hypothesized that this dysconnectivity is underpinned by white matter abnormalities in the left arcuate fasciculus, the main fiber bundle connecting speech production and perception areas. We therefore investigated the relationship between AVH severity and the integrity of the arcuate fasciculus measured by diffusion tensor imaging (DTI) tractography in patients with schizophrenia. Thirty-eight patients with treatment-resistant schizophrenia were included: 26 presented with daily severe treatment-resistant AVH, 12 reported prominent negative symptoms and no AVH. Fractional anisotropy (FA) was measured along the length of the left and right anterior arcuate fasciculi and severity of AVH was assessed using P3 PANSS item. FA values were significantly higher in the left arcuate fasciculus in patients with AVH than in no AVH patients (F(1,35) = 3.86; p = 0.05). No difference was observed in the right arcuate fasciculus. There was a significant positive correlation between FA value in the left arcuate fasciculus and the severity of AVH (r = 0.36; p = 0.02). No correlation was observed between FA values and PANSS total score suggesting a specific relationship between AVH severity and the left arcuate fasciculus integrity. These results support the hypothesis of a relationship between left frontotemporal connectivity and AVH in patients with schizophrenia and suggest that whilst a disruption of frontotemporal connectivity might be present to ensure the emergence of AVH, more severe anatomical alterations may prevent the occurrence of AVH in patients with schizophrenia.


Assuntos
Imagem de Tensor de Difusão/métodos , Alucinações/patologia , Alucinações/fisiopatologia , Vias Neurais/diagnóstico por imagem , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Percepção da Fala/fisiologia , Substância Branca/diagnóstico por imagem , Adulto , Feminino , Alucinações/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Esquizofrenia/diagnóstico por imagem
5.
Sante Ment Que ; 41(1): 223-39, 2016.
Artigo em Francês | MEDLINE | ID: mdl-27570958

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are noninvasive brain stimulation techniques currently used as therapeutic tools in various psychiatric conditions. Applied over the dorsolateral prefrontal cortex (DLPFC), they showed their efficacy in reducing drug-resistant symptoms in patients with major depression and in patients with schizophrenia with predominantly negative symptoms. The DLPFC is a brain structure involved in the expression of these symptoms as well as in other dysfunctional functions observed in theses conditions such as emotional processes. The goal of this review is to establish whether or not a link exists between clinical improvements and modulation of emotional processes following the stimulation of the DLPFC in both conditions. The data collected show that improved emotional processes is not linked to a clinical improvement neither in patients with depression nor in patients with negative schizophrenia. Our results suggests that although sharing common brain structures, the brain networks involved in both symptoms and in emotional processes would be separate.


Assuntos
Afeto/fisiologia , Depressão/terapia , Emoções/fisiologia , Córtex Pré-Frontal/fisiologia , Esquizofrenia/terapia , Estimulação Transcraniana por Corrente Contínua , Estimulação Magnética Transcraniana , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...