Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(14): 5427-5438, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38976447

RESUMO

In drug candidate design, clearance is one of the most crucial pharmacokinetic parameters to consider. Recent advancements in machine learning techniques coupled with the growing accumulation of drug data have paved the way for the construction of computational models to predict drug clearance. However, concerns persist regarding the reliability of data collected from public sources, and a majority of current in silico quantitative structure-property relationship models tend to neglect the influence of molecular chirality. In this study, we meticulously examined human liver microsome (HLM) data from public databases and constructed two distinct data sets with varying HLM data quantity and quality. Two baseline models (RF and DNN) and three chirality-focused GNNs (DMPNN, TetraDMPNN, and ChIRo) were proposed, and their performance on HLM data was evaluated and compared with each other. The TetraDMPNN model, which leverages chirality from 2D structure, exhibited the best performance with a test R2 of 0.639 and a test root-mean-squared error of 0.429. The applicability domain of the model was also defined by using a molecular similarity-based method. Our research indicates that graph neural networks capable of capturing molecular chirality have significant potential for practical application and can deliver superior performance.


Assuntos
Microssomos Hepáticos , Redes Neurais de Computação , Humanos , Microssomos Hepáticos/metabolismo , Estereoisomerismo , Relação Quantitativa Estrutura-Atividade , Aprendizado de Máquina , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo
2.
J Chem Inf Model ; 64(5): 1543-1559, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38381562

RESUMO

Noncovalent interactions between small-molecule drugs and protein targets assume a pivotal role in drug design. Moreover, the design of covalent inhibitors, forming covalent bonds with amino acid residues, requires rational reactivity for their covalent warheads, presenting a key challenge as well. Understanding the intricacies of these interactions provides a more comprehensive understanding of molecular binding mechanisms, thereby guiding the rational design of potent inhibitors. In this study, we adopted the fragment-based drug design approach, introducing a novel methodology to extract noncovalent and covalent fragments according to distinct three-dimensional (3D) interaction modes from noncovalent and covalent compound libraries. Additionally, we systematically replaced existing ligands with rational fragment substitutions, based on the spatial orientation of fragments in 3D space. Furthermore, we adopted a molecular generation approach to create innovative covalent inhibitors. This process resulted in the recombination of a noncovalent compound library and several covalent compound libraries, constructed by two commonly encountered covalent amino acids: cysteine and serine. We utilized noncovalent ligands in KLIFS and covalent ligands in CovBinderInPDB as examples to recombine noncovalent and covalent libraries. These recombined compound libraries cover a substantial portion of the chemical space present in the original compound libraries and exhibit superior performance in terms of molecular scaffold diversity compared to the original compound libraries and other 11 commercial libraries. We also recombined BTK-focused libraries, and 23 compounds within our libraries have been validated by former researchers to possess potential biological activity. The establishment of these compound libraries provides valuable resources for virtual screening of covalent and noncovalent drugs targeting similar molecular targets.


Assuntos
Desenho de Fármacos , Ligantes , Imageamento Tridimensional
3.
J Chem Inf Model ; 63(19): 5956-5970, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37724339

RESUMO

Retrosynthesis prediction is crucial in organic synthesis and drug discovery, aiding chemists in designing efficient synthetic routes for target molecules. Data-driven deep retrosynthesis prediction has gained importance due to new algorithms and enhanced computing power. Although existing models show certain predictive power on the USPTO-50K benchmark data set, no one considers the effects of byproducts during the prediction process, which may be due to the lack of byproduct information in the benchmark data set. Here, we propose a novel two-stage retrosynthesis reaction prediction framework based on byproducts called RPBP. First, RPBP predicts the byproduct involved in the reaction based on the product molecule. Then, it handles an end-to-end prediction problem based on the prediction of reactants by product and byproduct. Unlike other methods that first identify the potential reaction center and then predict reactant molecules, RPBP considers additional information from byproducts, such as reaction reagents, conditions, and sites. Interestingly, adding byproducts reduces model learning complexity in natural language processing (NLP). Our RPBP model achieves 54.7% and 66.6% top-1 retrosynthesis prediction accuracy when the reaction class is unknown and known, respectively. It outperforms existing methods for known-class reactions, thanks to the rich chemical information in byproducts. The prediction of four kinase drugs from the literature demonstrates the model's practicality and potential to accelerate drug discovery.

4.
Mol Inform ; 42(5): e2200257, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36725679

RESUMO

The toxicity of compounds is closely related to the effectiveness and safety of drug development, and accurately predicting the toxicity of compounds is one of the most challenging tasks in medicinal chemistry and pharmacology. In this paper, we construct three types of models for single and multi-tasking based on 2D and 3D descriptors, fingerprints and molecular graphs, and then validate the models with benchmark tests on the Tox21 data challenge. We found that due to the information sharing mechanism of multi-task learning, it could address the imbalance problem of the Tox21 data sets to some extent, and the prediction performance of the multi-task was significantly improved compared with the single task in general. Given the complement of the different molecular representations and modeling algorithms, we attempted to integrate them into a robust Co-Model. Our Co-Model performs well in various evaluation metrics on the test set and also achieves significant performance improvement compared to other models in the literature, which clearly demonstrates its superior predictive power and robustness.


Assuntos
Aprendizado Profundo , Algoritmos , Desenvolvimento de Medicamentos , Disseminação de Informação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA