Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 18(7)2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30011967

RESUMO

High-precision 3D laser scanning pavement data contains rich pavement scene information and certain components associations. Moreover, for pavement maintenance and management, there is an urgent need to develop automatic methods that can extract comprehensive information about different pavement indicators simultaneously. By analyzing the frequency and sparse characteristics of pavement distresses and performance indicators-including the cracks, road markings, rutting, potholes, textures-this paper proposes 3D pavement components decomposition model (3D-PCDM) which decomposes the 3D pavement profiles into sparse components x, low-frequency components f, and vibration components t. Designed high-pass filter was first employed to separate f, then, x and t are separated by total variation de-noising which based on sparse characteristics. Decomposed x can be used to characterize the location and depth information of sparse and sparse derived signals such as cracks, road marks, grooves, and potholes in profiles. Decomposed f can be used to determine the slow deformation of pavement. While decomposed t reflects the fluctuation of the pavement material particles. Experiments were conducted using actual pavement 3D data, the decomposed components can obtain by 3D-PCDM. The effectiveness and accuracy of the x are verified by actual cracks and road markings, the accuracy of extracted sparse components is over 92.75%.

2.
Sensors (Basel) ; 18(3)2018 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-29510499

RESUMO

Convolutional neural networks (CNN) have achieved great success in the optical image processing field. Because of the excellent performance of CNN, more and more methods based on CNN are applied to polarimetric synthetic aperture radar (PolSAR) image classification. Most CNN-based PolSAR image classification methods can only classify one pixel each time. Because all the pixels of a PolSAR image are classified independently, the inherent interrelation of different land covers is ignored. We use a fixed-feature-size CNN (FFS-CNN) to classify all pixels in a patch simultaneously. The proposed method has several advantages. First, FFS-CNN can classify all the pixels in a small patch simultaneously. When classifying a whole PolSAR image, it is faster than common CNNs. Second, FFS-CNN is trained to learn the interrelation of different land covers in a patch, so it can use the interrelation of land covers to improve the classification results. The experiments of FFS-CNN are evaluated on a Chinese Gaofen-3 PolSAR image and other two real PolSAR images. Experiment results show that FFS-CNN is comparable with the state-of-the-art PolSAR image classification methods.

3.
Sensors (Basel) ; 18(2)2018 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-29462962

RESUMO

The launch of the Chinese Gaofen-3 (GF-3) satellite will provide enough synthetic aperture radar (SAR) images with different imaging modes for land cover classification and other potential usages in the next few years. This paper aims to propose an efficient and practical classification framework for a GF-3 polarimetric SAR (PolSAR) image. The proposed classification framework consists of four simple parts including polarimetric feature extraction and stacking, the initial classification via XGBoost, superpixels generation by statistical region merging (SRM) based on Pauli RGB image, and a post-processing step to determine the label of a superpixel by modified majority voting. Fast initial classification via XGBoost and the incorporation of spatial information via a post-processing step through superpixel-based modified majority voting would potentially make the method efficient in practical use. Preliminary experimental results on real GF-3 PolSAR images and the AIRSAR Flevoland data set validate the efficacy and efficiency of the proposed classification framework. The results demonstrate that the quality of GF-3 PolSAR data is adequate enough for classification purpose. The results also show that the incorporation of spatial information is important for overall performance improvement.

4.
Sensors (Basel) ; 15(2): 2565-92, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25625906

RESUMO

Realization of open online control of diverse in-situ sensors is a challenge. This paper proposes a Cyber-Physical Geographical Information Service-enabled method for control of diverse in-situ sensors, based on location-based instant sensing of sensors, which provides closed-loop feedbacks. The method adopts the concepts and technologies of newly developed cyber-physical systems (CPSs) to combine control with sensing, communication, and computation, takes advantage of geographical information service such as services provided by the Tianditu which is a basic geographic information service platform in China and Sensor Web services to establish geo-sensor applications, and builds well-designed human-machine interfaces (HMIs) to support online and open interactions between human beings and physical sensors through cyberspace. The method was tested with experiments carried out in two geographically distributed scientific experimental fields, Baoxie Sensor Web Experimental Field in Wuhan city and Yemaomian Landslide Monitoring Station in Three Gorges, with three typical sensors chosen as representatives using the prototype system Geospatial Sensor Web Common Service Platform. The results show that the proposed method is an open, online, closed-loop means of control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...