Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202411766, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058420

RESUMO

A copper porphyrin-derived metal-organic framework electrocatalyst, FICN-8, was synthesized and its catalytic activity for CO2 reduction reaction (CO2RR) was investigated. FICN-8 selectively catalyzed electrochemical reduction of CO2 to CO in anhydrous acetonitrile electrolyte. However, formic acid became the dominant CO2RR product with the addition of a proton source to the system. Mechanistic studies revealed the change of major reduction pathway upon proton source addition, while catalyst-bound hydride (*H) species was proposed as the key intermediate for formic acid production. This work highlights the importance of electrolyte composition on CO2RR product selectivity.

2.
Langmuir ; 36(2): 546-553, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31849232

RESUMO

Conducting polymers tethered with molecular recognition elements are good candidates for biosensing applications such as detecting a target molecule with selectivity. We develop a new monomer, namely, 3,4-ethylenedioxythiophene bearing a pyridylboronic acid moiety (EDOT-PyBA), for label-free detection of sialic acid as a cancer biomarker. PyBA, which is known to show specific binding to sialic acid in acid conditions is used as a synthetic ligand instead of lectins. PyBA confirms the enhanced binding affinity for sialic acid at pH 5.0-6.0 compared with traditional phenylboronic acid. Poly(EDOT-PyBA) is electrodeposited on a planar glassy carbon electrode and the obtained film is successfully characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, water contact angle measurements, and electrochemical impedance spectroscopy. The specific interaction of PyBA with sialic acid at the solution/electrode interface is detected by differential pulse voltammetry in a dynamic range 0.1-3.0 mM with a detection limit of 0.1 mM for a detection time of 3 min. The sensitivity covers the total level of free sialic acid in human serum and the assay time is the shorter than that of other methods. The poly(EDOT-PyBA) electrode successfully detects spiked sialic acid in human serum samples. Owing to its processability, mass productivity, and robustness, polythiophene conjugated with "boronolectin" is a candidate material for developing point-of-care and wearable biosensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA