Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Heart J ; 65(2): 300-307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556338

RESUMO

Angiogenesis is crucial for blood supply reconstitution after myocardial infarction in patients with acute coronary syndrome (ACS). MicroRNAs are recognized as important epigenetic regulators of endothelial angiogenesis. The purpose of this study is to determine the roles of miR-522-3p in angiogenesis after myocardial infarction. The expression levels of miR-522-3p in rats' plasma and in the upper part of the ligation of the heart tissues at 28 days after myocardial infarction were significantly higher than those of the sham group. miR-522-3p mimics inhibited cell proliferations, migrations, and tube formations under hypoxic conditions in HUVECs (human umbilical vein endothelial cells), whereas miR-522-3p inhibitors did the opposite. Furthermore, studies have indicated that the inhibition of miR-522-3p by antagomir infusion promoted angiogenesis and accelerated the recovery of cardiac functions in rats with myocardial infarction.Data analysis and experimental results revealed that FOXP1 (Forkhead-box protein P1) was the target gene of miR-522-3p. Our study explored the mechanism of cardiac angiogenesis after myocardial infarction and provided a potential therapeutic approach for the treatment of ischemic heart disease in the future.


Assuntos
MicroRNAs , Infarto do Miocárdio , Animais , Humanos , Ratos , Angiogênese , Fatores de Transcrição Forkhead/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição
2.
Bioelectrochemistry ; 157: 108679, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471411

RESUMO

The primary objective of this study is to elucidate the synergistic effect of an exogenous redox mediator and carbon starvation on the microbiologically influenced corrosion (MIC) of metal nickel (Ni) by nitrate reducing Pseudomonas aeruginosa. Carbon source (CS) starvation markedly accelerates Ni MIC by P. aeruginosa. Moreover, the addition of exogenous riboflavin significantly decreases the corrosion resistance of Ni. The MIC rate of Ni (based on corrosion loss volume) is ranked as: 10 % CS level + riboflavin > 100 % CS level + riboflavin > 10 % CS level > 100 % CS level. Notably, starved P. aeruginosa biofilm demonstrates greater aggressiveness in contributing to the initiation of surface pitting on Ni. Under CS deficiency (10 % CS level) in the presence of riboflavin, the deepest Ni pits reach a maximum depth of 11.2 µm, and the corrosion current density (icorr) peak at approximately 1.35 × 10-5 A·cm-2, representing a 2.6-fold increase compared to the full-strength media (5.25 × 10-6 A·cm-2). For the 10 % CS and 100 % CS media, the addition of exogenous riboflavin increases the Ni MIC rate by 3.5-fold and 2.9-fold, respectively. Riboflavin has been found to significantly accelerate corrosion, with its augmentation effect on Ni MIC increasing as the CS level decreases. Overall, riboflavin promotes electron transfer from Ni to P. aeruginosa, thus accelerating Ni MIC.


Assuntos
Níquel , Pseudomonas aeruginosa , Corrosão , Carbono , Riboflavina/farmacologia , Biofilmes
3.
Acta Biomater ; 171: 506-518, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778485

RESUMO

Developing environmentally friendly, broad-spectrum, and long-lasting antibacterial materials remains challenging. Our ternary BiOI@Bi2S3/MXene composites, which exhibit both photothermal therapy (PTT) and photodynamic therapy (PDT) antibacterial properties, were synthesized through in-situ vulcanization of hollow flower-shaped BiOI on the surface of two-dimensional Ti3C2 MXene. The unique hollow flower-shaped BiOI structure with a high exposure of the (001) crystal plane amplifies light reflection and scattering, offering more active sites to improve light utilization. Under 808 nm irradiation, these composites achieved a photothermal conversion efficiency of 57.8 %, boosting the PTT antibacterial effect. The heterojunction between Bi2S3 and BiOI creates a built-in electric field at the interface, promoting hole and electron transfer. Significantly, the close-contact heterogeneous interface enhances charge transfer and suppresses electron-hole recombination, thereby boosting PDT bacteriostatic performance. EPR experiments confirmed that ∙O2- and •OH radicals play major roles in photocatalytic bacteriostatic reactions. The combined antibacterial action of PTT and PDT led to efficiencies of 99.7 % and 99.8 % against P. aeruginosa and S. aureus, respectively, under 808 nm laser irradiation. This innovative strategy and thoughtful design open new avenues for heterojunction materials in PTT and PDT sterilization. STATEMENT OF SIGNIFICANCE: Photodynamic and photothermal therapy is a promising antibacterial treatment, but its efficiency still limits its application. To overcome this limitation, we prepared three-dimensional heterogeneous BiOI@Bi2S3/MXene nanocomposites through in-situ vulcanization of hollow flower-shaped BiOI with a high exposure of the (001) crystal plane onto the surface of two-dimensional MXene material. The resulting ternary material forms a close-contact heterogeneous interface, which improves charge transfer channels, reduces electron-hole pair recombination, and amplifies photodynamic bacteriostatic performance. These nanocomposites exhibit photothermal conversion efficiency of 57.8 %, enhancing their photothermal bactericidal effects. They demonstrated antibacterial efficiencies of 99.7 % against P. aeruginosa and 99.8 % against S. aureus. Therefore, this study provides a promising method for the synthesis of environmentally friendly and efficient antibacterial materials.


Assuntos
Fotoquimioterapia , Staphylococcus aureus , Antibacterianos/farmacologia , Eletricidade , Pseudomonas aeruginosa
4.
J Colloid Interface Sci ; 645: 251-265, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37149999

RESUMO

The Z-scheme heterojunction has demonstrated significant potential for promoting photogenerated carrier separation. However, the rational design of all-solid Z-scheme heterojunctions catalysts and the controversies about carrier transfer path of direct Z-scheme heterojunctions catalysts face various challenges. Herein, a novel heterojunction, Cu2O@V-CN (octa), was fabricated using V-CN (carbon nitride with nitrogen-rich vacancies) in-situ electrostatic self-wrapping Cu2O octahedra. Density functional theory (DFT) calculations revealed that the separation of carriers across the Cu2O@V-CN (octa) heterointerface was directly mapped to the Z-scheme mechanism compared to Cu2O/V-CN (sphere). This is because the Cu2O octahedra expose more highly active (111) lattice planes with more terminal Cu atoms and V-CN with abundant nitrogen vacancies to form delocalized electronic structures like electronic reservoirs. This facilitates the wrapping of Cu2O octahedra by V-CN and protects their stability via tighter interfacial contact, thus enhancing the tunneling of carriers for rapid photocatalytic sterilization. These findings provide novel approaches for designing high-efficiency Cu2O-based photocatalytic antifoulants for practical applications.

5.
PLoS Negl Trop Dis ; 17(5): e0011385, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37253066

RESUMO

Schistosomiasis is a serious and neglected disease with a high prevalence in tropical and subtropical countries. The primary pathology of hepatic schistosomiasis caused by Schistosoma japonicum (S. japonicum) or Schistosoma mansoni (S. mansoni) infection is egg-induced granuloma and subsequent fibrosis in the liver. Activation of hepatic stellate cells (HSCs) is the central driver of liver fibrosis. Macrophages (Mφ), making up 30% of cells in hepatic granulomas, directly or indirectly regulate HSC activation by paracrine mechanisms, via secreting cytokines or chemokines. Currently, Mφ-derived extracellular vesicles (EVs) are broadly involved in cell communication with adjacent cell populations. However, whether Mφ-derived EVs could target neighboring HSCs to regulate their activation during schistosome infection remains largely unknown. Schistosome egg antigen (SEA) is considered to be the main pathogenic complex mixture involved in liver pathology. Here, we demonstrated that SEA induced Mφ to produce abundant extracellular vesicles, which directly activated HSCs by activating their autocrine TGF-ß1 signaling. Mechanistically, EVs derived from SEA-stimulated Mφ contained increased miR-33, which were transferred into HSCs and subsequently upregulated autocrine TGF-ß1 in HSCs through targeting and downregulating SOCS3 expression, thereby promoting HSC activation. Finally, we validated that EVs derived from SEA-stimulated Mφ utilized enclosed miR-33 to promote HSC activation and liver fibrosis in S. japonicum-infected mice. Overall, our study indicates that Mφ-derived EVs play important roles in the paracrine regulation of HSCs during the progression of hepatic schistosomiasis, representing a potential target for the prevention of liver fibrosis in hepatic schistosomiasis.


Assuntos
Vesículas Extracelulares , MicroRNAs , Schistosoma japonicum , Esquistossomose , Animais , Camundongos , Fator de Crescimento Transformador beta1 , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/patologia , Esquistossomose/patologia , Fígado/patologia , Schistosoma japonicum/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo
6.
Bioelectrochemistry ; 153: 108453, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37230047

RESUMO

Carbon starvation can affect the activity of microbes, thereby affecting the metabolism and the extracellular electron transfer (EET) process of biofilm. In the present work, the microbiologically influenced corrosion (MIC) behavior of nickel (Ni) was investigated under organic carbon starvation by Desulfovibrio vulgaris. Starved D. vulgaris biofilm was more aggressive. Extreme carbon starvation (0% CS level) reduced weight loss due to the severe weakening of biofilm. The corrosion rate of Ni (based on weight loss) was sequenced as 10% CS level > 50% CS level > 100 CS level > 0% CS level. Moderate carbon starvation (10% CS level) caused the deepest pit of Ni in all the carbon starvation treatments, with a maximal pit depth of 18.8 µm and a weight loss of 2.8 mg·cm-2 (0.164 mm·y-1). The corrosion current density (icorr) of Ni for the 10% CS level was as high as 1.62 × 10-5 A·cm-2, which was approximately 2.9-fold greater than the full-strength medium (5.45 × 10-6 A·cm-2). The electrochemical data corresponded to the corrosion trend revealed by weight loss. The various experimental data rather convincingly pointed to the Ni MIC of D. vulgaris following the EET-MIC mechanism despite a theoretically low Ecell value (+33 mV).


Assuntos
Desulfovibrio vulgaris , Desulfovibrio , Humanos , Desulfovibrio vulgaris/metabolismo , Níquel , Corrosão , Carbono/metabolismo , Biofilmes , Redução de Peso , Aço
7.
Cell Prolif ; 56(8): e13419, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36756972

RESUMO

Benzyl butyl phthalate (BBP) is a chemical softener and plasticizer commonly used in toys, food packaging, wallpaper, detergents and shampoos. The estrogenic actions of BBP have detrimental effects on humans and animals. In this study, the specific influence of BBP on mouse oocyte maturation was investigated using in vivo and in vitro models. The experiment first verified that BBP exposure significantly affected the rate of oocyte exclusion of the first polar body, although it did not affect germinal vesicle breakdown (GVBD) through in vitro oocyte culture system. Results of in vitro fertilization show that BBP exposure affects blastocyst rate. Subsequently, the results obtained by immunofluorescence staining technology showed that oocyte spindle organization, chromosomal arrangement and the distribution of cortical actin were disrupted by BBP exposure, and led to the failure of oocyte meiotic maturation and the subsequent early embryo development. Singe-cell transcriptome analysis found that BBP exposure altered the expression levels of 588 genes, most associated with mitochondria-related oxidative stress. Further analysis demonstrated that the detrimental effects of BBP involved the disruption of mitochondrial function and oxidative stress-induced early apoptosis. Nicotinamide mononucleotide (NMN) supplementation reduced the adverse effects of BBP. Collectively, these findings revealed a mechanism of BBP-induced toxicity on female reproduction and showed that NMN provides an effective treatment for BBP actions.


Assuntos
Mononucleotídeo de Nicotinamida , Ácidos Ftálicos , Humanos , Feminino , Animais , Camundongos , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Oócitos/metabolismo , Ácidos Ftálicos/farmacologia , Ácidos Ftálicos/toxicidade , Estresse Oxidativo , Nucleotídeos/metabolismo , Apoptose
8.
Stem Cell Rev Rep ; 19(4): 1051-1066, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36696015

RESUMO

Mesenchymal stem cell-derived extracellular vesicles (MSCs-EVs) possess cardioprotection in acute myocardial infarction. Nevertheless, the therapeutic intervention potential and the molecular mechanism of EVs from NMN (Nicotinamide mononucleotide) preconditioned hUCMSCs (N-EVs) in acute myocardial infarction remains unknown. In the present study, EVs from hUCMSCs (M-EVs) and N-EVs were identified by electron microscopy, immunoblotting and nanoparticle tracking analysis. Compared with M-EVs, N-EVs significantly increased the proliferation, migration, and angiogenesis of HUVECs. Meanwhile, N-EVs markedly reduced apoptosis and cardiac fibrosis and promoted angiogenesis in the peri-infarct region in the MI rats. A high-throughput miRNA sequencing and qPCR methods analysis revealed that miR-210-3p was abundant in N-EVs and the expression of miR-210-3p was obviously upregulated in HUVECs after N-EVs treated. Overexpression of miR-210-3p in HUVECs significantly enhanced the tube formation, migration and proliferative capacities of HUVECs. However, downregulation of miR-210-3p in HUVECs markedly decreased the tube formation, migration and proliferative capacities of HUVECs. Furthermore, bioinformatics analysis and luciferase assays revealed that EphrinA3 (EFNA3) was a direct target of miR-210-3p. Knockdown of miR-210-3p in N-EVs significantly impaired its ability to protect the heart after myocardial infarction. Altogether, these results indicated that N-EVs promoted the infarct healing through improvement of angiogenesis by miR-210-3p via targeting the EFNA3. Created with Biorender.com.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Infarto do Miocárdio , Animais , Ratos , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Coração , MicroRNAs/genética
9.
Bioact Mater ; 19: 139-154, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35475028

RESUMO

Ligamentum flavum (LF) hypertrophy (LFH) has been recognised as one of the key contributors to lumbar spinal stenosis. Currently, no effective methods are available to ameliorate this hypertrophy. In this study, human umbilical cord mesenchymal stromal cell-derived extracellular vesicles (hUCMSC-EVs) were introduced for the first time as promising vehicles for drug delivery to treat LFH. The downregulation of miR-146a-5p and miR-221-3p expressions in human LF tissues negatively correlated with increased LF thickness. The hUCMSC-EVs enriched with these two miRNAs significantly suppressed LFH in vivo and notably ameliorated the progression of transforming growth factor ß1(TGF-ß1)-induced fibrosis in vitro after delivering these two miRNAs to mouse LF cells. The results further demonstrated that miR-146a-5p and miR-221-3p directly bonded to the 3'-UTR regions of SMAD4 mRNA, thereby inhibiting the TGF-ß/SMAD4 signalling pathway. Therefore, this translational study determined the effectiveness of a hUCMSC-EVs-based approach for the treatment of LFH and revealed the critical target of miR-146a-5p and miR-221-3p. Our findings provide new insights into promising therapeutics using a hUCMSC-EVs-based delivery system for patients with lumbar spinal stenosis.

10.
J Transl Med ; 20(1): 20, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991623

RESUMO

BACKGROUND: The aberrant expression of E3 ubiquitin ligase Pellino-1 (PELI1) contributes to several human cancer development and progression. However, its expression patterns and functional importance in papillary thyroid cancer (PTC) remains unknown. METHODS: PELI1 expression profiles in PTC tissues were obtained and analyzed through the starBase v3.0 analysis. Real-time PCR, Immunohistochemical assays (IHC) and Western blot were used to investigate the mRNA and protein levels of PELI1 in PTC. The effects of PELI1 on PTC cell progression were evaluated through CCK-8, colony formation, Transwell, and Wound healing assay in vitro, and a PTC xenograft mouse model in vivo. The downstream target signal of PELI1 in PTC was analyzed by using Kyoto encyclopedia of genes and genomes (KEGG), and bioinformatics tools were used to identify potential miRNAs targeting PELI1. Human umbilical cord mesenchymal stem cells were modified by miR-30c-5p and the miR-30c-5p containing extracellular vesicles were collected (miR-30c-5p-EVs) by ultra-high-speed centrifugation method. Then, the effects of miR-30c-5p-EVs on PELI1 expression and PTC progression were evaluated both in vitro and in vivo. RESULTS: Both mRNA and protein expression of PELI1 were widely increased in PTC tissues, and overexpression of PELI1 was positively correlated with bigger tumor size and lymph node metastases. PELI1 promoted PTC cell proliferation and migration in vitro. While, PELI1 silencing significantly suppressed PTC growth in vivo accompanied with reduced expression of Ki-67 and matrix metallopeptidase 2 (MMP-2). Mechanistically, PI3K-AKT pathway was identified as the downstream target of PELI1, and mediated the functional influence of PELI1 in PTC cells. Moreover, we found that the expression of miR-30c-5p was inversely correlated with PELI1 in PTC samples and further confirmed that miR-30c-5p was a tumor-suppressive miRNA that directly targeted PELI1 to inhibit PTC cell proliferation and migration. Furthermore, we showed that miR-30c-5p-EVs could effectively downregulate PELI1 expression and suppress the PTC cell growth in vitro and in vivo. CONCLUSION: This study not only supported the first evidence that miR-30c-5p loss-induced PELI1 accumulation facilitated cell proliferation and migration by activating the PI3K-AKT pathway in PTC but also provided novel insights into PTC therapy based on miR-carrying-hUCMSC-EVs.


Assuntos
MicroRNAs/genética , Neoplasias da Glândula Tireoide , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , MicroRNAs/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
Bioelectrochemistry ; 144: 108040, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34959026

RESUMO

The eutrophication of seawater is not only harmful to the environment, but also influence microbes' proliferation and then influence biocorrosion of marine engineering materials to a great extent. This study investigated the microbiologically influenced corrosion (MIC) of Cu immersed in the Desulfovibrio vulgaris (a sulfate reducing bacterium) medium with four defined nutritional degrees: total nutrition, P lacking, N lacking, and P&N lacking. When D. vulgaris was cultured in more nutritional medium, more H2S was generated and more serious corrosion of Cu occurred. The concentration of H2S corresponding to the medium with total nutrition was as high as 4.9 × 104(±913.0) ppm. The weight loss of Cu in medium with total nutrition increased by at least 50% compared with other nutritional conditions. The depth of pitting pits on Cu increased obviously with more abundant nutrient elements N and P. The electrochemical tests supported the weight loss and also showed that an obvious passivation zone was formed on the anodic polarization curve. This indicated that a protective film was formed on the surface of Cu against uniform corrosion. The analyses of thermodynamics and experiment data indicated that metabolite MIC (M-MIC) account for the Cu corrosion by D. vulgaris.


Assuntos
Desulfovibrio vulgaris
12.
Bioelectrochemistry ; 143: 107990, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34763171

RESUMO

Biocorrosion of Cu remains a significant challenge in marine engineering but the mechanism is still not clear. The nutrients in marine environment affect the microbe's growth and the formation of biofilm, and then affect biocorrosion of metal to a large extent. In this study, the effect of NO3- concentration in Pseudomonas aeruginosa (P. aeruginosa) medium on the formation of extracellular polymer substance (EPS) film and biocorrosion of Cu were studied. The experiments results showed that limiting NO3- in culture medium triggered increased EPS film but decreased biocorrosion of Cu induced by P. aeruginosa. With increase of NO3- content in the culture medium, the Cu surface attached less polysaccharides and proteins, but the Cu corrosion rate was accelerated. The weight loss of Cu and the maximum pit depth were both increased with increase of NO3- content. The XPS and XRD analyses indicated that the major corrosion product is Cu2O. The increased corrosion rate with increase of the NO3- level were attributed to the EET-MIC route, the formation of Cu(NH3)2+, and the more loose EPS film.


Assuntos
Cobre
13.
Int J Mol Sci ; 22(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34502515

RESUMO

Free proline has multiple functions in plant cells, such as regulating osmotic potential and protecting both proteins and cell membranes. The expression of Δ1-Pyrroline-5-carboxylate synthase (P5CS), a key enzyme in the proline biosynthetic pathway, increases under drought, salt and cold stress conditions, causing plant cells to accumulate large amounts of proline. In this study, we cloned and identified the P5CS gene from Stipa purpurea, which has a full-length of 2196 bp and encodes 731 amino acids. A subcellular localization analysis indicated that SpP5CS localized to the cytoplasm. The ectopic overexpression of SpP5CS in Arabidopsis thaliana resulted in higher proline contents, longer roots, higher survival rates and less membrane damage under drought stress conditions compared with wild-type controls. SpP5CS-overexpressing A. thaliana was more resistant to drought stress than the wild type, whereas the deletion mutant sp5cs was less resistant to drought stress. Thus, SpP5CS may be a potential candidate target gene for increasing plant resistance to drought stress.


Assuntos
Ornitina-Oxo-Ácido Transaminase/genética , Poaceae/genética , Estresse Fisiológico/genética , Secas , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Ornitina-Oxo-Ácido Transaminase/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Poaceae/metabolismo , Prolina/metabolismo
14.
PLoS Negl Trop Dis ; 15(8): e0009696, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34398890

RESUMO

Schistosomiasis is a neglected tropical disease of public health concern. The most devastating pathology in schistosomiasis japonica and mansoni is mainly attributed to the egg-induced granulomatous response and secondary fibrosis in host liver, which may lead to portal hypertension or even death of the host. Schistosome eggs induce M2 macrophages-rich granulomas and these M2 macrophages play critical roles in the maintenance of granuloma and subsequent fibrosis. Reactive oxygen species (ROS), which are highly produced by stimulated macrophages during infection and necessary for the differentiation of M2 macrophages, are massively distributed around deposited eggs in the liver. However, whether ROS are induced by schistosome eggs to subsequently promote M2 macrophage differentiation, and the possible underlying mechanisms as well, remain to be clarified during S. japonicum infection. Herein, we observed that extensive expression of ROS in the liver of S. japonicum-infected mice. Injection of ROS inhibitor in infected mice resulted in reduced hepatic granulomatous responses and fibrosis. Further investigations revealed that inhibition of ROS production in S. japonicum-infected mice reduces the differentiation of M2, accompanied by increased M1 macrophage differentiation. Finally, we proved that S. japonicum egg antigens (SEA) induce a high level of ROS production via both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and mitochondria in macrophages. Our study may help to better understand the mechanism of schistosomiasis japonica-induced hepatic pathology and contribute to the development of potential therapeutic strategies by interfering with ROS production.


Assuntos
Fígado/patologia , Macrófagos/citologia , Óvulo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Schistosoma japonicum/fisiologia , Esquistossomose Japônica/fisiopatologia , Animais , Diferenciação Celular , Humanos , Fígado/metabolismo , Fígado/parasitologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Schistosoma japonicum/genética , Esquistossomose Japônica/metabolismo , Esquistossomose Japônica/parasitologia
15.
Am J Transl Res ; 13(3): 1290-1306, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841657

RESUMO

Peripheral nerve injury, a disease that affects 1 million people worldwide every year, occurs when peripheral nerves are destroyed by injury, systemic illness, infection, or an inherited disorder. Indeed, repair of damaged peripheral nerves is predominantly mediated by type 2 immune responses. Given that helminth parasites induce type 2 immune responses in hosts, we wondered whether helminths or helminth-derived molecules might have the potential to improve peripheral nerve repair. Here, we demonstrated that schistosome-derived SJMHE1 promoted peripheral myelin growth and functional regeneration via a macrophage-dependent mechanism and simultaneously increased the induction of M2 macrophages. Our findings highlight the therapeutic potential of schistosome-derived SJMHE1 for improving peripheral nerve repair.

16.
Stem Cell Res Ther ; 12(1): 4, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407872

RESUMO

BACKGROUND: As one of the main functional forms of mesenchymal stem cells (MSCs), MSC-derived extracellular vesicles (MSC-EVs) have shown an alternative therapeutic option in experimental models of allergic asthma. Oxygen concentration plays an important role in the self-renewal, proliferation, and EV release of MSCs and a recent study found that the anti-asthma effect of MSCs was enhanced by culture in hypoxic conditions. However, the potential of hypoxic MSC-derived EVs (Hypo-EVs) in asthma is still unknown. METHODS: BALB/c female mice were sensitized and challenged with ovalbumin (OVA), and each group received PBS, normoxic human umbilical cord MSC-EVs (Nor-EVs), or Hypo-EVs weekly. After treatment, the animals were euthanized, and their lungs and bronchoalveolar lavage fluid (BALF) were collected. With the use of hematoxylin and eosin (HE), periodic acid-Schiff (PAS) and Masson's trichrome staining, enzyme-linked immune sorbent assay (ELISA), Western blot analysis, and real-time PCR, the inflammation and collagen fiber content of airways and lung parenchyma were investigated. RESULTS: Hypoxic environment can promote human umbilical cord MSCs (hUCMSCs) to release more EVs. In OVA animals, the administration of Nor-EVs or Hypo-EVs significantly ameliorated the BALF total cells, eosinophils, and pro-inflammatory mediators (IL-4 and IL-13) in asthmatic mice. Moreover, Hypo-EVs were generally more potent than Nor-EVs in suppressing airway inflammation in asthmatic mice. Compared with Nor-EVs, Hypo-EVs further prevented mouse chronic allergic airway remodeling, concomitant with the decreased expression of pro-fibrogenic markers α-smooth muscle actin (α-SMA), collagen-1, and TGF-ß1-p-smad2/3 signaling pathway. In vitro, Hypo-EVs decreased the expression of p-smad2/3, α-SMA, and collagen-1 in HLF-1 cells (human lung fibroblasts) stimulated by TGF-ß1. In addition, we showed that miR-146a-5p was enriched in Hypo-EVs compared with that in Nor-EVs, and Hypo-EV administration unregulated the miR-146a-5p expression both in asthma mice lung tissues and in TGF-ß1-treated HLF-1. More importantly, decreased miR-146a-5p expression in Hypo-EVs impaired Hypo-EV-mediated lung protection in OVA mice. CONCLUSION: Our findings provided the first evidence that hypoxic hUCMSC-derived EVs attenuated allergic airway inflammation and airway remodeling in chronic asthma mice, potentially creating new avenues for the treatment of asthma.


Assuntos
Asma , Vesículas Extracelulares , Remodelação das Vias Aéreas , Animais , Asma/terapia , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Feminino , Inflamação/terapia , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina
17.
Immunology ; 162(3): 328-338, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33283278

RESUMO

Schistosomiasis is a neglected tropical disease with over 250 million people infected worldwide. The main clinically important species Schistosoma mansoni (S. mansoni) and Schistosoma japonicum (S. japonicum) cause inflammatory responses against tissue-trapped eggs, resulting in formation of granulomas mainly in host liver. Persistent granulomatous response results in severe fibrosis in the liver, leading to irreversible impairment of the liver and even death of the host. CD1d, a highly conserved MHC class I-like molecule, is expressed by both haematopoietic and non-haematopoietic cells. CD1d on antigen-presenting cells (APCs) of haematopoietic origin presents pathogen-derived lipid antigens to natural killer T (NKT) cells, which enables them to rapidly produce large amounts of various cytokines and facilitate CD4+ T helper (Th) cell differentiation upon invading pathogens. Noteworthy, hepatocytes of non-haematopoietic origin have recently been shown to be involved in maintaining liver NKT cell homeostasis through a CD1d-dependent manner. However, whether hepatocyte CD1d-dependent regulation of NKT cell homeostasis also modulates CD4+ Th cell responses and liver immunopathology in murine schistosomiasis remains to be addressed. Here, we show in mice that CD1d expression on hepatocytes was decreased dramatically upon S. japonicum infection, accompanied by increased NKT cells, as well as upregulated Th1 and Th2 responses. Overexpression of CD1d in hepatocytes significantly decreased local NKT numbers and cytokines (IFN-γ, IL-4, IL-13), concomitantly with downregulation of both Th1 and Th2 responses and alleviation in pathological damage in livers of S. japonicum-infected mice. These findings highlight the potential of hepatocyte CD1d-targeted therapies for liver immunopathology control in schistosomiasis.


Assuntos
Antígenos CD1d/metabolismo , Hepatócitos/imunologia , Fígado/imunologia , Schistosoma japonicum/imunologia , Esquistossomose Japônica/imunologia , Animais , Antígenos CD1d/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Hepatócitos/metabolismo , Hepatócitos/patologia , Interações Hospedeiro-Parasita , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Células T Matadoras Naturais/parasitologia , Schistosoma japonicum/patogenicidade , Esquistossomose Japônica/metabolismo , Esquistossomose Japônica/parasitologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/parasitologia , Células Th2/imunologia , Células Th2/metabolismo , Células Th2/parasitologia
18.
Oncol Lett ; 19(4): 2733-2738, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32218825

RESUMO

Effects of combined epidural anesthesia on the cognitive function, inflammation and stress response in the elderly liver cancer patients undergoing surgery were explored. Elderly liver cancer patients (n=100) undergoing surgery in the Second Affiliated Hospital of Dalian Medical University from January 2015 to December 2018 were enrolled and randomly divided into observation group (n=50) and control group (n=50). In control group only conventional anesthesia was performed using 2 µg/kg fentanyl, 1.5 mg/kg propofol and 0.2 mg/kg atracurium, in addition to the procedures in the control group, combined epidural anesthesia was administered using 0.5% bupivacaine for 15 sec and maintained via 0.25% bupivacaine in the observation group. The anesthetic effect was observed and the arterial oxygen saturation (SaO2), heart rate (HR), mean arterial pressure (MAP) and mini-mental state examination (MMSE) and cognitive function scores by cognitive abilities screening instrument (CASI) were evaluated in the patients, and their blood was drawn to detect the inflammatory factors interleukin (IL)-6, IL-1 and tumor necrosis factor-α (TNF-α), superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), norepinephrine and epinephrine. The observation group exhibited a better anesthetic effect and obviously smaller decreases in the SaO2 and MAP and increase in HR than the control group (P<0.05). The MMSE and CASI scores, and the content of IL-1, IL-6, TNF-α, MDA, CAT, norepinephrine and epinephrine in the observation group was obviously lower than that in the control group (P<0.05), while the content of SOD was evidently higher than that in the control group (P<0.05). Overall postoperative conditions in the observation group was superior to the control group (P<0.05), with the incidence rate of cognitive disorder lower than that in the control group (P<0.05). Combined epidural anesthesia dramatically improves the postoperative conditions and cognitive function and relieve inflammatory and stress responses in the patients with a better anesthetic effect, thus holding promise for application.

19.
Bioelectrochemistry ; 133: 107478, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32036296

RESUMO

Microbiologically influenced corrosion (MIC) of copper by Desulfovibrio vulgaris, a sulfate reducing bacterium (SRB), was investigated in anaerobic vials with a fixed broth volume of 40 mL but varied headspace volumes (10 mL, 85 mL 160 mL). It was found that the headspace volume variation had a very large effect on the dissolved [H2S] in the broth and the cell counts of planktonic and sessile cells, as well as Cu corrosion severity. A 16× smaller headspace led to a 1.6-fold increase in the dissolved [H2S], a 13-fold decrease in sessile SRB cell count, a 32-fold decrease in planktonic cell count and a 3.7-fold increase of Cu weight loss. SEM images revealed that different headspace volumes caused different corrosion patterns on the immersed coupons. With a lower headspace volume, pitting corrosion was observed, while with a higher headspace volume, intergranular corrosion was seen. The results confirmed that SRB MIC of Cu belongs to metabolite-MIC (M-MIC) by H2S, unlike SRB MIC of carbon steel that belongs to extracellular electron transfer-MIC (EET-MIC) that is directly correlated with sessile cell counts rather than dissolved [H2S]. .


Assuntos
Cobre/metabolismo , Desulfovibrio vulgaris/metabolismo , Sulfatos/metabolismo , Anaerobiose , Cobre/análise , Corrosão , Desulfovibrio vulgaris/citologia , Sulfeto de Hidrogênio/metabolismo
20.
Stem Cell Res Ther ; 11(1): 21, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31918749

RESUMO

BACKGROUND: Accumulating evidence shows that mesenchymal stem cells (MSCs) have the potential as a cellular therapy avenue for schistosome-induced liver injury. Extracellular vesicles (EVs) are membranous vesicles released by almost all cell types, and EVs produced by MSCs (MSC-EVs) exert therapeutic effects in several disease models. However, the potential of MSC-EVs in schistosomiasis treatment remains unclear. METHODS: Using survival analysis, HE and Masson's trichrome staining, immunohistochemical, western blot analysis, real-time PCR, and EdU proliferation, we investigated the effects of human umbilical cord MSC-derived EVs (hUCMSC-EVs) on the survival and liver injury in the S. japonicum-infected mice and explored the underlying mechanism. RESULTS: Here, we found that like hUCMSCs, hUCMSC-EVs significantly ameliorated liver injury and improved the survival of schistosome-infected mice. Indeed, the hUCMSC-EV-mediated alleviation of liver injury is associated with decreased expression of α-smooth muscle actin (α-SMA), collagen 1, and collagen 3. More importantly, we showed that hUCMSC-EVs directly suppressed the proliferation of LX2 (human hepatic stellate cell) in vitro. In addition, hUCMSC-EVs significantly downregulated the activation of LX2 after transforming growth factor-ß1 (TGF-ß1) treatment. CONCLUSION: Our results provided the first evidence that hUCMSC-EVs reduced liver injury in S. japonicum-infected mice, potentially creating new avenues for the treatment of liver damage in schistosomiasis.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Células Estreladas do Fígado/metabolismo , Fígado/lesões , Células-Tronco Mesenquimais/metabolismo , Animais , Regulação para Baixo , Fígado/patologia , Camundongos , Schistosoma japonicum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...