Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38543401

RESUMO

The non-degradable nature of petroleum-based plastics and the dependence on petroleum-based products in daily life and production are dilemmas of human development today. We hereby developed a plastic waste upcycling process to address these challenges. A multi-stream fraction strategy was developed to process poly (ethylene terephthalate) (PET) plastics into soluble and insoluble fractions. The soluble fraction was used as a sole carbon source for microbial fermentation to produce biodiesel precursor lipids with an appreciable bioconversion yield. The insoluble fraction containing fractionated polymers was used as the asphalt binder modifiers. The downsized PET additive improved the high-temperature performance of the asphalt binder by 1 performance grade (PG) without decreasing the low-temperature PG. Subsequent SEM imaging unveiled alterations in the micromorphology induced by PET incorporation. Further FTIR and 1H NMR analysis highlighted the aromatic groups of PET polymers as a crucial factor influencing performance enhancement. The results demonstrated the multi-stream fraction as a promising approach for repurposing plastic waste to produce biodiesel and modify asphalt. This approach holds the potential to tackle challenges in fuel supply and enhance infrastructure resilience to global warming.

2.
iScience ; 26(10): 107870, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766973

RESUMO

Even though the discovery of lytic polysaccharide monooxygenases (LPMOs) has fundamentally shifted our understanding of biomass degradation, most of the current studies focused on their roles in carbohydrate oxidation. However, no study demonstrated if LPMO could directly participate to the process of lignin degradation in lignin-degrading microbes. This study showed that LPMO could synergize with lignin-degrading enzymes for efficient lignin degradation in white-rot fungi. The transcriptomics analysis of fungi Irpex lacteus and Dichomitus squalens during their lignocellulosic biomass degradation processes surprisingly highlighted that LPMOs co-regulated with lignin-degrading enzymes, indicating their more versatile roles in the redox network. Biochemical analysis further confirmed that the purified LPMO from I. lacteus CD2 could use diverse electron donors to produce H2O2, drive Fenton reaction, and synergize with manganese peroxidase for lignin oxidation. The results thus indicated that LPMO might uniquely leverage the redox network toward dynamic and efficient degradation of different cell wall components.

3.
Biomacromolecules ; 24(9): 3996-4004, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37555845

RESUMO

The bioconversion of homogeneous linear catechyl lignin (C-lignin) to polyhydroxyalkanoates (PHA) was examined for the first time in this study. C-lignins from vanilla, euphorbia, and candlenut seed coats (denoted as C1, C2, and C3, respectively) varied in their molecular structures, which showed different molecular weight distributions, etherification degrees, and contents of hydroxyl groups. A notable amount of nonetherified catechol units existed within C1 and C2 lignins, and these catechol units were consumed during fermentation. These results suggested that the nonetherified catechol structure was readily converted by Pseudomonas putida KT2440. Since the weight-average molecular weight of C2 raw lignin was 26.7% lower than that of C1, the bioconversion performance of C2 lignin was more outstanding. The P. putida KT2440 cell amount reached the maximum of 9.3 × 107 CFU/mL in the C2 medium, which was 37.9 and 82.4% higher than that in the C1 and C3 medium, respectively. Accordingly, PHA concentration reached 137 mg/L within the C2 medium, which was 41.2 and 149.1% higher than the C1 and C3 medium, respectively. Overall, C-lignin, with a nonetherified catechol structure and low molecular weight, benefits its microbial conversion significantly.


Assuntos
Poli-Hidroxialcanoatos , Pseudomonas putida , Lignina/química , Poli-Hidroxialcanoatos/química , Fermentação , Pseudomonas putida/química
4.
RSC Adv ; 13(29): 20187-20197, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37416906

RESUMO

Lignin has long been a trait of interest, especially in bioenergy feedstocks such as Populus. While the stem lignin of Populus is well studied, foliar lignin has received significantly less consideration. To this end, leaves from 11 field grown, natural variant Populus trichocarpa genotypes were investigated by NMR, FTIR, and GC-MS. Five of these genotypes were sufficiently irrigated, and the other six genotypes were irrigated at a reduced rate (59% of the potential evapotranspiration for the site) to induce drought treatment. Analysis by HSQC NMR revealed highly variable lignin structure among the samples, especially for the syringyl/guaiacyl (S/G) ratio, which ranged from 0.52-11.9. Appreciable levels of a condensed syringyl lignin structure were observed in most samples. The same genotype subjected to different treatments exhibited similar levels of condensed syringyl lignin, suggesting this was not a response to stress. A cross peak of δC/δH 74.6/5.03, consistent with the erythro form of the ß-O-4 linkage, was observed in genotypes where significant syringyl units were present. Principle component analysis revealed that FTIR absorbances associated with syringyl units (830 cm-1, 1317 cm-1) greatly contributed to variability between samples. Additionally, the ratio of 830/1230 cm-1 peak intensities were reasonably correlated (p-value < 0.05) with the S/G ratio determined by NMR. Analysis by GC-MS revealed significant variability of secondary metabolites such as tremuloidin, trichocarpin, and salicortin. Additionally, salicin derivatives were found to be well correlated with NMR results, which has been previously hypothesized. These results highlight previously unexplored nuance and variability associated with foliage tissue of poplar.

5.
Biotechnol Biofuels Bioprod ; 16(1): 100, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308891

RESUMO

BACKGROUND: C-lignin is a homopolymer of caffeyl alcohol present in the seed coats of a variety of plant species including vanilla orchid, various cacti, and the ornamental plant Cleome hassleriana. Because of its unique chemical and physical properties, there is considerable interest in engineering C-lignin into the cell walls of bioenergy crops as a high-value co-product of bioprocessing. We have used information from a transcriptomic analysis of developing C. hassleriana seed coats to suggest strategies for engineering C-lignin in a heterologous system, using hairy roots of the model legume Medicago truncatula. RESULTS: We systematically tested strategies for C-lignin engineering using a combination of gene overexpression and RNAi-mediated knockdown in the caffeic acid/5-hydroxy coniferaldehyde 3/5-O-methyltransferase (comt) mutant background, monitoring the outcomes by analysis of lignin composition and profiling of monolignol pathway metabolites. In all cases, C-lignin accumulation required strong down-regulation of caffeoyl CoA 3-O-methyltransferase (CCoAOMT) paired with loss of function of COMT. Overexpression of the Selaginella moellendorffii ferulate 5-hydroxylase (SmF5H) gene in comt mutant hairy roots resulted in lines that unexpectedly accumulated high levels of S-lignin. CONCLUSION: C-Lignin accumulation of up to 15% of total lignin in lines with the greatest reduction in CCoAOMT expression required the strong down-regulation of both COMT and CCoAOMT, but did not require expression of a heterologous laccase, cinnamyl alcohol dehydrogenase (CAD) or cinnamoyl CoA reductase (CCR) with preference for 3,4-dihydroxy-substituted substrates in M. truncatula hairy roots. Cell wall fractionation studies suggested that the engineered C-units are not present in a heteropolymer with the bulk of the G-lignin.

6.
Front Plant Sci ; 14: 1089011, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351208

RESUMO

Due to its ability to spread quickly and result in tree mortality, Sphaerulina musiva (Septoria) is one of the most severe diseases impacting Populus. Previous studies have identified that Septoria infection induces differential expression of phenylpropanoid biosynthesis genes. However, more extensive characterization of changes to lignin in response to Septoria infection is lacking. To study the changes of lignin due to Septoria infection, four field grown, naturally variant Populus trichocarpa exhibiting visible signs of Septoria infection were sampled at health, infected, and reaction zone regions for cell wall characterization. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and acid hydrolysis were applied to identify changes to the cell wall, and especially lignin. FTIR and subsequent principal component analysis revealed that infected and reaction zone regions were similar and could be distinguished from the non-infected (healthy) region. NMR results indicated the general trend that infected region had a higher syringyl:guaiacyl ratio and lower p-hydroxybenzoate content than the healthy regions from the same genotype. Finally, Klason lignin content in the infected and/or reaction zone regions was shown to be higher than healthy region, which is consistent with previous observations of periderm development and metabolite profiling. These results provide insights on the response of Populus wood characteristics to Septoria infection, especially between healthy and infected region within the same genotype.

7.
Front Plant Sci ; 14: 1153113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215291

RESUMO

Populus is a promising lignocellulosic feedstock for biofuels and bioproducts. However, the cell wall biopolymer lignin is a major barrier in conversion of biomass to biofuels. To investigate the variability and underlying genetic basis of the complex structure of lignin, a population of 409 three-year-old, naturally varying Populus trichocarpa genotypes were characterized by heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR). A subsequent genome-wide association study (GWAS) was conducted using approximately 8.3 million single nucleotide polymorphisms (SNPs), which identified 756 genes that were significantly associated (-log10(p-value)>6) with at least one lignin phenotype. Several promising candidate genes were identified, many of which have not previously been reported to be associated with lignin or cell wall biosynthesis. These results provide a resource for gaining insights into the molecular mechanisms of lignin biosynthesis and new targets for future genetic improvement in poplar.

8.
RSC Adv ; 13(19): 12750-12759, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37101533

RESUMO

Lignin is the dominant aromatic renewable polymer on earth. Generally, its complex and heterogeneous structure hinders its high-value utilization. Catechyl lignin (C-lignin), a novel lignin discovered in the seed coats of vanilla and several members of Cactaceae, has received increasing attention due to its unique homogeneous linear structure. Obtaining substantial amounts of C-lignin either by gene regulation or effective isolation is essential to advance C-lignin's valorization. Through a fundamental understanding of the biosynthesis process, genetic engineering to promote the accumulation of C-lignin in certain plants was developed to facilitate C-lignin valorization. Various isolation methods were also developed to isolate C-lignin, among which deep eutectic solvents (DESs) treatment is one of the most promising approaches to fractionate C-lignin from biomass materials. Since C-lignin is composed of homogeneous catechyl units, depolymerization to produce catechol monomers demonstrates a promising way for value-added utilization of C-lignin. Reductive catalytic fractionation (RCF) represents another emerging technology for effective depolymerizing C-lignin, leading to a narrow distribution of lignin-derived aromatic products (e.g., propyl and propenyl catechol). Meanwhile, the linear molecular structure predisposes C-lignin as a potential promising feedstock for preparing carbon fiber materials. In this review, the biosynthesis of this unique C-lignin in plants is summarized. C-lignin isolation from plants and various depolymerization approaches to obtaining aromatic products are overviewed with highlights on RCF process. Exploring new application areas based on C-lignin's unique homogeneous linear structure is also discussed with its potential for high-value utilization in the future.

9.
Bioresour Technol ; 368: 128280, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36368492

RESUMO

Biomass pretreatment is considered a key step in the 2nd generation biofuel production from lignocellulosic biomass. Research on conventional biomass pretreatment solvents has mainly been focused on carbohydrate conversion efficiency, while their hazardousness and/or carbon intensity were not comprehensively considered. Recent sustainability issues request further consideration for eco-friendly and sustainable alternatives like biomass-derived solvents. Carbohydrate and lignin-derived solvents have been proposed and investigated as green alternatives in many biomass processes. In this review, the applications of different types of biomass pretreatment solvents, including organic, ionic liquid, and deep eutectic solvents, are thoroughly discussed. The role of water as a co-solvent in these pretreatment processes is also reviewed. Finally, current research challenges and prospects of utilizing biomass-derived pretreatment solvents for pretreatment are discussed. Given bioethanol's market potential and increasing public awareness about environmental concerns, it will be a priority adopting sustainable and green biomass pretreatment solvents in biorefinery.


Assuntos
Biocombustíveis , Lignina , Biomassa , Solventes , Carboidratos
10.
Biotechnol Biofuels Bioprod ; 15(1): 117, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316752

RESUMO

BACKGROUND: Bacterial lignin degradation is believed to be primarily achieved by a secreted enzyme system. Effects of such extracellular enzyme systems on lignin structural changes and degradation pathways are still not clearly understood, which remains as a bottleneck in the bacterial lignin bioconversion process. RESULTS: This study investigated lignin degradation using an isolated secretome secreted by Pseudomonas putida KT2440 that grew on glucose as the only carbon source. Enzyme assays revealed that the secretome harbored oxidase and peroxidase/Mn2+-peroxidase capacity and reached the highest activity at 120 h of the fermentation time. The degradation rate of alkali lignin was found to be only 8.1% by oxidases, but increased to 14.5% with the activation of peroxidase/Mn2+-peroxidase. Gas chromatography-mass spectrometry (GC-MS) and two-dimensional 1H-13C heteronuclear single-quantum coherence (HSQC) NMR analysis revealed that the oxidases exhibited strong C-C bond (ß-ß, ß-5, and ß-1) cleavage. The activation of peroxidases enhanced lignin degradation by stimulating C-O bond (ß-O-4) cleavage, resulting in increased yields of aromatic monomers and dimers. Further mass spectrometry-based quantitative proteomics measurements comprehensively identified different groups of enzymes particularly oxidoreductases in P. putida secretome, including reductases, peroxidases, monooxygenases, dioxygenases, oxidases, and dehydrogenases, potentially contributed to the lignin degradation process. CONCLUSIONS: Overall, we discovered that bacterial extracellular degradation of alkali lignin to vanillin, vanillic acid, and other lignin-derived aromatics involved a series of oxidative cleavage, catalyzed by active DyP-type peroxidase, multicopper oxidase, and other accessory enzymes. These results will guide further metabolic engineering design to improve the efficiency of lignin bioconversion.

11.
ChemSusChem ; 15(8): e202102486, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35199466

RESUMO

Carbon dots (CDs) are a relatively new type of fluorescent carbon material with excellent performance and widespread application. As the most readily available and widely distributed biomass resource, lignocellulosics are a renewable bioresource with great potential. Research into the preparation of CDs with lignocellulose (LC-CDs) has become the focus of numerous researchers. Compared with other carbon sources, lignocellulose is low cost, rich in structural variety, exhibits excellent biocompatibility,[1] and the structures of CDs prepared by lignin, cellulose, and hemicellulose are similar. This Review summarized research progress in the preparation of CDs from lignocellulosics in recent years and reviewed traditional and new preparation methods, physical and chemical properties, optical properties, and applications of LC-CDs, providing guidance for the formation and improvement of LC-CDs. In addition, the challenges of synthesizing LC-CDs were also highlighted, including the interaction of different lignocellulose components on the formation of LC-CDs and the nucleation and growth mechanism of LC-CDs; from this, current trends and opportunities of LC-CDs were examined, and some research methods for future research were put forward.


Assuntos
Carbono , Pontos Quânticos , Biomassa , Carbono/química , Corantes , Corantes Fluorescentes/química , Lignina , Pontos Quânticos/química
12.
Bioresour Technol ; 343: 126061, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34597806

RESUMO

Hydrothermal pretreatment (HTP) using only water offers great potential to reduce the overall cost of the bioconversion process. However, traditional HTP performed in a batch has limitations in removing lignin and often needs to be performed under severe conditions to achieve reasonable pretreatment effects. Lignin left in the pretreated residue at these conditions is also highly condensed, thus possessing an even more adverse impact on the hydrolysis process, which requires high enzyme loadings. To address these technical challenges, HTP performed in a flow-through configuration was developed to simultaneously achieve near-complete hemicellulose recovery, high lignin removal and high sugar release. Despite facing challenges such as potentially large water usage, flow-through HTP still represents one of the most cost-effective and eco-friendly pretreatment methods. This review mainly covers the latest cutting-edge innovations of flow-through HTP along with structural and compositional changes of cellulose, hemicellulose, and lignin before and after pretreatment.


Assuntos
Celulose , Lignina , Biomassa , Hidrólise , Água
13.
Bioresour Technol ; 347: 126367, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34801717

RESUMO

Cosolvent Enhanced Lignocellulosic Fractionation (CELF) is an emerging solvolysis pretreatment to fractionate lignocellulosic biomass. Herein, the bioconversion performance of CELF lignin was fully evaluated for the first time. Results showed that CELF lignin possessed higher content of carboxylic acid OH, lower molecular weight, and disappeared ß-O-4 and ß-5 linkages compared to other two technical lignins including a conventional ethanol organosolv lignin (EOL) and a kraft lignin (KL). Rhodococcus opacus PD630 cell count from CELF lignin fermentation reached the highest value of 3.9 × 107 CFU/mL, representing a 62.5% and 77.3% improvement over EOL and KL, respectively. Correspondingly, lipid yield reached 143 mg/L from CELF lignin, which was 36.2% and 26.5% higher than from EOL and KL, respectively. Principal component analysis (PCA) revealed that more carboxylic acid groups and lower molecular weight contributed to the enhanced bioconversion performance of CELF lignin. This study demonstrates that CELF lignin is a promising candidate for bioconversion.


Assuntos
Fracionamento Químico , Lignina , Biomassa , Etanol
14.
ChemSusChem ; 14(23): 5235-5244, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34533890

RESUMO

Integrating multidisciplinary research in plant genetic engineering and renewable deep eutectic solvents (DESs) can facilitate a sustainable and economic biorefinery. Herein, we leveraged a plant genetic engineering approach to specifically incorporate C6 C1 monomers into the lignin structure. By expressing the bacterial ubiC gene in sorghum, p-hydroxybenzoic acid (PB)-rich lignin was incorporated into the plant cell wall while this monomer was completely absent in the lignin of the wild-type (WT) biomass. A DES was synthesized with choline chloride (ChCl) and PB and applied to the pretreatment of the PB-rich mutant biomass for a sustainable biorefinery. The release of fermentable sugars was significantly enhanced (∼190 % increase) compared to untreated biomass by the DES pretreatment. In particular, the glucose released from the pretreated mutant biomass was up to 12 % higher than that from the pretreated WT biomass. Lignin was effectively removed from the biomass with the preservation of more than half of the ß-Ο-4 linkages without condensed aromatic structures. Hydrogenolysis of the fractionated lignin was conducted to demonstrate the potential of phenolic compound production. In addition, a simple hydrothermal treatment could selectively extract PB from the same engineered lignin, showing a possible circular biorefinery. These results suggest that the combination of PB-based DES and engineered PB-rich biomass is a promising strategy to achieve a sustainable closed-loop biorefinery.

15.
Biotechnol Biofuels ; 14(1): 63, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750435

RESUMO

BACKGROUND: Conventional aqueous dilute sulfuric acid (DSA) pretreatment of lignocellulosic biomass facilitates hemicellulose solubilization and can improve subsequent enzymatic digestibility of cellulose to fermentable glucose. However, much of the lignin after DSA pretreatment either remains intact within the cell wall or readily redeposits back onto the biomass surface. This redeposited lignin has been shown to reduce enzyme activity and contribute to rapid enzyme deactivation, thus, necessitating significantly higher enzyme loadings than deemed economical for biofuel production from biomass. RESULTS: In this study, we demonstrate how detrimental lignin redeposition on biomass surface after pretreatment can be prevented by employing Co-solvent Enhanced Lignocellulosic Fractionation (CELF) pretreatment that uses THF-water co-solvents with dilute sulfuric acid to solubilize lignin and overcome limitations of DSA pretreatment. We first find that enzymatic hydrolysis of CELF-pretreated switchgrass can sustain a high enzyme activity over incubation periods as long as 5 weeks with enzyme doses as low as 2 mg protein/g glucan to achieve 90% yield to glucose. A modified Ninhydrin-based protein assay revealed that the free-enzyme concentration in the hydrolysate liquor, related to enzyme activity, remained unchanged over long hydrolysis times. DSA-pretreated switchgrass, by contrast, had a 40% drop in free enzymes in solution during incubation, providing evidence of enzyme deactivation. Furthermore, measurements of enzyme adsorption per gram of lignin suggested that CELF prevented lignin redeposition onto the biomass surface, and the little lignin left in the solids was mostly integral to the original lignin-carbohydrate complex (LCC). Scanning electron micrographs and NMR characterization of lignin supported this observation. CONCLUSIONS: Enzymatic hydrolysis of solids from CELF pretreatment of switchgrass at low enzyme loadings was sustained for considerably longer times and reached higher conversions than for DSA solids. Analysis of solids following pretreatment and enzymatic hydrolysis showed that prolonged cellulase activity could be attributed to the limited lignin redeposition on the biomass surface making more enzymes available for hydrolysis of more accessible glucan.

16.
Biotechnol Biofuels ; 14(1): 50, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33640016

RESUMO

BACKGROUND: Hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase (HCT) is a central enzyme of the so-called "esters" pathway to monolignols. As originally envisioned, HCT functions twice in this pathway, to form coumaroyl shikimate and then, in the "reverse" direction, to convert caffeoyl shikimate to caffeoyl CoA. The discovery of a caffeoyl shikimate esterase (CSE) that forms caffeic acid directly from caffeoyl shikimate calls into question the need for the reverse HCT reaction in lignin biosynthesis. Loss of function of HCT gives severe growth phenotypes in several dicot plants, but less so in some monocots, questioning whether this enzyme, and therefore the shikimate shunt, plays the same role in both monocots and dicots. The model grass Brachypodium distachyon has two HCT genes, but lacks a classical CSE gene. This study was therefore conducted to evaluate the utility of HCT as a target for lignin modification in a species with an "incomplete" shikimate shunt. RESULTS: The kinetic properties of recombinant B. distachyon HCTs were compared with those from Arabidopsis thaliana, Medicago truncatula, and Panicum virgatum (switchgrass) for both the forward and reverse reactions. Along with two M. truncatula HCTs, B. distachyon HCT2 had the least kinetically unfavorable reverse HCT reaction, and this enzyme is induced when HCT1 is down-regulated. Down regulation of B. distachyon HCT1, or co-down-regulation of HCT1 and HCT2, by RNA interference led to reduced lignin levels, with only modest changes in lignin composition and molecular weight. CONCLUSIONS: Down-regulation of HCT1, or co-down-regulation of both HCT genes, in B. distachyon results in less extensive changes in lignin content/composition and cell wall structure than observed following HCT down-regulation in dicots, with little negative impact on biomass yield. Nevertheless, HCT down-regulation leads to significant improvements in biomass saccharification efficiency, making this gene a preferred target for biotechnological improvement of grasses for bioprocessing.

17.
Bioresour Technol ; 323: 124593, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33387707

RESUMO

Recently, efficient production of xylo-oligosaccharides (XOS) from poplar by acetic acid (AA) pretreatment was developed; but the effect of residual lignin on subsequent cellulase hydrolysis was unclear. Herein, XOS was produced from poplar by AA pretreatment and the effect of AA pretreatment on lignin inhibition to cellulase hydrolysis was investigated. The results indicated that a high XOS yield of 55.8% was obtained, and the inhibition degree of lignin in poplar increased from 1.0% to 6.8% after AA pretreatment. Lignin was acetylated and its molecular weight decreased from 12,211 to 2871 g/mol after AA pretreatment. The increase of S/G ratio, phenolic hydroxyl, and condensed units of lignin after AA pretreatment might be reasons for this intensified inhibition. The results advanced our understanding of the structural and inhibitory properties of lignin after production of XOS from poplar with AA pretreatment, and provided references for efficient cellulase hydrolysis of poplar after AA pretreatment.


Assuntos
Lignina , Populus , Ácido Acético , Hidrólise , Oligossacarídeos/farmacologia
18.
Biotechnol Biofuels ; 14(1): 11, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413621

RESUMO

BACKGROUND: Efficient utilization of all available carbons from lignocellulosic biomass is critical for economic efficiency of a bioconversion process to produce renewable bioproducts. However, the metabolic responses that enable Pseudomonas putida to utilize mixed carbon sources to generate reducing power and polyhydroxyalkanoate (PHA) remain unclear. Previous research has mainly focused on different fermentation strategies, including the sequential feeding of xylose as the growth stage substrate and octanoic acid as the PHA-producing substrate, feeding glycerol as the sole carbon substrate, and co-feeding of lignin and glucose. This study developed a new strategy-co-feeding glycerol and lignin derivatives such as benzoate, vanillin, and vanillic acid in Pseudomonas putida KT2440-for the first time, which simultaneously improved both cell biomass and PHA production. RESULTS: Co-feeding lignin derivatives (i.e. benzoate, vanillin, and vanillic acid) and glycerol to P. putida KT2440 was shown for the first time to simultaneously increase cell dry weight (CDW) by 9.4-16.1% and PHA content by 29.0-63.2%, respectively, compared with feeding glycerol alone. GC-MS results revealed that the addition of lignin derivatives to glycerol decreased the distribution of long-chain monomers (C10 and C12) by 0.4-4.4% and increased the distribution of short-chain monomers (C6 and C8) by 0.8-3.5%. The 1H-13C HMBC, 1H-13C HSQC, and 1H-1H COSY NMR analysis confirmed that the PHA monomers (C6-C14) were produced when glycerol was fed to the bacteria alone or together with lignin derivatives. Moreover, investigation of the glycerol/benzoate/nitrogen ratios showed that benzoate acted as an independent factor in PHA synthesis. Furthermore, 1H, 13C and 31P NMR metabolite analysis and mass spectrometry-based quantitative proteomics measurements suggested that the addition of benzoate stimulated oxidative-stress responses, enhanced glycerol consumption, and altered the intracellular NAD+/NADH and NADPH/NADP+ ratios by up-regulating the proteins involved in energy generation and storage processes, including the Entner-Doudoroff (ED) pathway, the reductive TCA route, trehalose degradation, fatty acid ß-oxidation, and PHA biosynthesis. CONCLUSIONS: This work demonstrated an effective co-carbon feeding strategy to improve PHA content/yield and convert lignin derivatives into value-added products in P. putida KT2440. Co-feeding lignin break-down products with other carbon sources, such as glycerol, has been demonstrated as an efficient way to utilize biomass to increase PHA production in P. putida KT2440. Moreover, the involvement of aromatic degradation favours further lignin utilization, and the combination of proteomics and metabolomics with NMR sheds light on the metabolic and regulatory mechanisms for cellular redox balance and potential genetic targets for a higher biomass carbon conversion efficiency.

19.
N Biotechnol ; 60: 189-199, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33130025

RESUMO

Modification of lignin with poly(ε-caprolactone) is a promising approach to valorize industrial low-value lignins and to advance the bioeconomy. We have synthesized lignin grafted poly(ε-caprolactone) (lignin-g-PCL) copolymers via ring-opening polymerization of ε-caprolactone with different types of lignins of varying botanical sources (G-type pine lignin, S/G-type poplar lignin, and C-type Vanilla seeds lignin) and lignin extraction methods (Kraft and ethanol organosolv pulping). The lignin-g-PCL copolymer showed remarkably improved compatibility and dispersion in acetone, chloroform, and toluene in comparison to non-modified lignins. The structure and thermal properties of the lignin-g-PCL were investigated using Fourier-transform infrared spectroscopy (FTIR), 31P nuclear magnetic resonance (NMR), 2D heteronuclear single quantum correlation (HSQC) NMR, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). We have found that all the technical lignins were reactive to the copolymerization reaction regardless of their plant source and isolation methods. The molecular weights of the synthesized lignin-g-PCL copolymers were positively correlated with the content of aliphatic lignin hydroxyls, suggesting that the copolymerization reaction tends to occur preferentially at the aliphatic hydroxyls rather than the phenolic hydroxyls of lignin. Thermal analyses of the lignin-g-PCL copolymers were studied, and in general, a reduction of melting temperature and crystallinity percentage in comparison to the neat PCL was observed. However, the thermal behavior of lignin-g-PCL copolymers varied depending on the lignin feedstocks employed in the copolymerization reaction.


Assuntos
Lignina/biossíntese , Plantas/química , Poliésteres/metabolismo , Biomassa , Lignina/química , Lignina/isolamento & purificação , Conformação Molecular , Plantas/metabolismo , Poliésteres/química , Polimerização
20.
Polymers (Basel) ; 12(10)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33023014

RESUMO

The quest for converting lignin into high-value products has been continuously pursued in the past few decades. In its native form, lignin is a group of heterogeneous polymers comprised of phenylpropanoids. The major commercial lignin streams, including Kraft lignin, lignosulfonates, soda lignin and organosolv lignin, are produced from industrial processes including the paper and pulping industry and emerging lignocellulosic biorefineries. Although lignin has been viewed as a low-cost and renewable feedstock to replace petroleum-based materials, its utilization in polymeric materials has been suppressed due to the low reactivity and inherent physicochemical properties of lignin. Hence, various lignin modification strategies have been developed to overcome these problems. Herein, we review recent progress made in the utilization of functionalized lignins in commodity polymers including thermoset resins, blends/composites, grafted functionalized copolymers and carbon fiber precursors. In the synthesis of thermoset resins such as polyurethane, phenol-formaldehyde and epoxy, they are covalently incorporated into the polymer matrix, and the discussion is focused on chemical modifications improving the reactivity of technical lignins. In blends/composites, functionalization of technical lignins is based upon tuning the intermolecular forces between polymer components. In addition, grafted functional polymers have expanded the utilization of lignin-based copolymers to biomedical materials and value-added additives. Different modification approaches have also been applied to facilitate the application of lignin as carbon fiber precursors, heavy metal adsorbents and nanoparticles. These emerging fields will create new opportunities in cost-effectively integrating the lignin valorization into lignocellulosic biorefineries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...