Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(45): 31125-31136, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37947379

RESUMO

In this study, the properties of the natural mineral chalcopyrite CuFeS2 after mechanical activation in a planetary mill were studied. The intensity of mechanical activation was controlled by changing the revolutions of the mill in the range 100-600 min-1. A series of characterization techniques, such as XRD, SEM, TEM, TA (DTA, TG, and DTG), particle size analysis, and UV-vis spectroscopy was applied and reactivity studies were also performed. Several new features were revealed for the mechanically activated chalcopyrite, e.g. the poly-modal distribution of produced nanoparticles on the micrometer scale, agglomeration effects by prolonged milling, possibility to modify the shape of the particles, X-ray amorphization and a shift from a non-cubic (tetragonal) structure to pseudo-cubic structure. The thermoelectric response was evaluated on the "softly" compacted powder via the spark plasma sintering method (very short holding time, low sintering temperature, and moderate pressure) by measuring the Seebeck coefficient and electrical and thermal conductivity above room temperature. The milling process produced samples with lower resistivity compared to the original non-activated sample. The Seebeck data close to zero confirmed the "compensated" character of natural chalcopyrite, reflecting its close-to stoichiometric composition with low concentration of both n- and p-type charge carriers. Alternatively, an evident correlation between thermal conductivity and energy supply by milling was observed with the possibility of band gap manipulation, which is associated with the energy delivered by the milling procedure.

2.
Materials (Basel) ; 16(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36984410

RESUMO

This paper is devoted to the evaluation of the "three-body-abrasion" wear behaviour of (wt.%) 5W-5Mo-5V-10Cr-2.5Ti-Fe (balance) multi-component (C + B)-added alloys in the as-cast condition. The carbon (0.3 wt.%, 0.7 wt.%, 1.1 wt.%) and boron (1.5 wt.%, 2.5 wt.%, 3.5 wt.%) contents were selected using a full factorial (32) design method. The alloys had a near-eutectic (at 1.5 wt.% B) or hyper-eutectic (at 2.5-3.5 wt.% B) structure. The structural micro-constituents were (in different combinations): (a) (W, Mo, and V)-rich borocarbide M2(B,C)5 as the coarse primary prismatoids or as the fibres of a "Chinese-script" eutectic, (b) Ti-rich carboboride M(C,B) with a dispersed equiaxed shape, (c) Cr-rich carboboride M7(C,B)3 as the plates of a "rosette"-like eutectic, and (d) Fe-rich boroncementite (M3(C,B)) as the plates of "coarse-net" and ledeburite eutectics. The metallic matrix was ferrite (at 0.3-1.1 wt.% C and 1.5 wt.% B) and "ferrite + pearlite" or martensite (at 0.7-1.1 wt.% C and 2.5-3.5 wt.% B). The bulk hardness varied from 29 HRC (0.3 wt.% C-1.5 wt.% B) to 53.5 HRC (1.1 wt.% C-3.5 wt.% B). The wear test results were mathematically processed and the regression equation of the wear rate as a function of the carbon and boron contents was derived and analysed. At any carbon content, the lowest wear rate was attributed to the alloy with 1.5 wt.% B. Adding 2.5 wt.% B led to an increase in the wear rate because of the appearance of coarse primary borocarbides (M2(B,C)5), which were prone to chipping and spalling-off under abrasion. At a higher boron content (3.5 wt.%), the wear rate decreased due to the increase in the volume fraction of the eutectic carboborides. The optimal chemical composition was found to be 1.1 wt.% C-1.5 wt.% B with a near-eutectic structure with about 35 vol.% of hard inclusions (M2(B,C)5, M(C,B), M3(C,B), and M7(C,B)3) in total. The effect of carbon and boron on the abrasive behaviour of the multi-component cast alloys with respect to the alloys' structure is discussed, and the mechanism of wear for these alloys is proposed.

3.
Materials (Basel) ; 14(20)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34683753

RESUMO

A high-carbon, high-silicon steel (1.21 wt% C, 2.56 wt% Mn, 1.59 wt% Si) was subjected to quenching from 900 and 1000 °C, resulting in microstructures containing 60 and 94% of retained austenite, respectively. Subsequent abrasive wear tests of quenched samples were performed using two-body abrasion and three-body abrasion testing machines. Investigations on worn surface and subsurface were carried out using SEM, XRD, and microhardness measurement. It was found that the highest microhardness of worn surface (about 1400 HV0.05) was achieved on samples quenched from 900 °C after three-body abrasion. Microhardness of samples after two-body abrasion was noticeably smaller. with a maximum of about 1200 HV0.05. This difference correlates with microstructure investigations along with XRD results. Three-body abrasion has produced a significantly deeper deformed layer; corresponding diffractograms show bigger values of the full width at half maximum parameter (FWHM) for both α and γ alone standing peaks. The obtained results are discussed in the light of possible differences in abrasive wear conditions and differing stability of retained austenite after quenching from different temperatures. It is shown that a structure of metastable austenite may be used as a detector for wear conditions, as the sensitivity of such austenite to phase transformation strongly depends on wear conditions, and even small changes in the latter lead to significant differences in the properties of the worn surface.

4.
Materials (Basel) ; 13(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545601

RESUMO

This paper deals with the tribological study of the laser remelted surfaces of the ECAP-processed AZ61 magnesium alloy and AZ61-Al2O3 metal matrix composite with 10 wt.% addition of Al2O3 nanoparticles. The study included the experimental optimization of the laser surface remelting conditions for the investigated materials by employing a 400 W continual wave fiber laser source. Tribological tests were performed in a conventional "ball-on-disc" configuration with a ceramic ZrO2 ball under a 5 N normal load and a sliding speed of 100 mm/s. The results showed that both the incorporation of Al2O3 nanoparticles and the applied laser treatments led to recognizable improvements in the tribological properties of the studied AZ61-Al2O3 composites in comparison with the reference AZ61 alloy. Thus, the best improvement has been obtained for the laser modified AZ61-10 wt.% Al2O3 nanocomposite showing about a 48% decrease in the specific wear rate compared to the laser untreated AZ61 base material.

5.
Materials (Basel) ; 12(13)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288446

RESUMO

Currently, the non-oriented (NO) iron-silicon steels are extensively used as the core materials in various electrical devises due to excellent combination of their mechanical and soft magnetic properties. The present study introduces a fairly innovative technological approach applicable for fully finished NO electrical steel before punching the laminations. It is based on specific mechanical processing by bending and rolling in combination with subsequent annealing under dynamic heating conditions. It has been revealed that the proposed unconventional treatment clearly led to effective improvement of the steel magnetic properties thanks to its beneficial effects involving additional grain growth with appropriate crystallographic orientation and residual stress relief. The philosophy of the proposed processing was based on employing the phenomena of selective grain growth by strain-induced grain boundary migration and a steep temperature gradient through the cross-section of heat treated specimens at dynamic heating conditions. The stored deformation energy necessary for the grain growth was provided by plastic deformation induced within the studied specimens during the bending and rolling process. The magnetic measurements clearly show that the specimens treated according to our approach exhibited more than 17% decrease in watt losses in comparison with the specimens treated by conventional heat treatment leading only to stress relief without additional grain growth.

6.
Materials (Basel) ; 12(12)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31200565

RESUMO

In the present work, we have used unconventional short-term secondary recrystallization heat treatment employing extraordinary high heating rate to develop coarse-grained microstructure with enhanced intensity of rotating cube texture {100}<011> in semi-finish vacuum degassed non-oriented electrical steels. The soft magnetic properties were improved through the increase of grains size with favourable cube crystallographic orientation. The appropriate final textural state of the treated experimental steels was achieved by strain-induced grain boundary migration mechanism, activated by gradient of accumulated stored deformation energy between neighbouring grains after the application of soft cold work, combined with steep temperature gradient during subsequent heat treatment under dynamic heating conditions. The materials in our experimentally prepared material states were mounted on the stator and rotor segments of electrical motors and examined for their efficiency in real operational conditions. Moreover, conventionally long-term heat treated materials, prepared in industrial conditions, were also tested for reference. The results show that the electrical motor containing the segments treated by our innovative approach, exhibits more than 1.2% higher efficiency, compared to the motor containing conventionally heat treated materials. The obtained efficiency enhancement can be directly related to the improved microstructural and textural characteristics of our unconventionally heat treated materials, specifically the homogenous coarse grained microstructure and the high intensity of cube and Goss crystallographic texture.

7.
Sci Rep ; 7(1): 10087, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855669

RESUMO

Graphene nanoplatelets (GNPs) have emerged as one of the most promising filler materials for improving the tribological performance of ceramic composites due to their outstanding solid lubricant properties as well as mechanical and thermal stability. Yet, the addition of GNPs has so far enabled only a very limited improvement in the tribological properties of ceramics, particularly concerning the reduction of their friction coefficient. This is most likely due to the challenges of achieving a continuous lubricating and protecting tribo-film through a high GNP coverage of the exposed surfaces. Here we demonstrate that this can be achieved by efficiently increasing the exfoliation degree of GNPs down to the few-layer (FL) range. By employing FL-GNPs as filler material, the wear resistance of Si3N4 composites can be increased by more than twenty times, the friction coefficient reduced to nearly its half, while the other mechanical properties are also preserved or improved. Confocal Raman spectroscopy measurements revealed that at the origin of the spectacular improvement of the tribological properties is the formation of a continuous FL- GNP tribo-film, already at 5 wt% FL-GNP content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...