Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; 88(12): e202300405, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37756039

RESUMO

Alzheimer's disease (AD) is the most common form of dementia worldwide, affecting millions of people around the globe. AD is characterized by different pathologies being beta-amyloid (Aß) plaque formation, metal ion dysregulation, and oxidative stress (OS) central topics under investigation. Copper-Aß complexes have been shown to induce catalytic hydrogen peroxide formation and increase OS in the brain leading to neuronal death. Pincer-type compounds are tridentate ligands that coordinate metals in a planar fashion whose properties can be tuned via group substitutions, giving rise to many possibilities in catalysis and drug discovery. In this work we evaluated the potential pharmaceutical activity of 26 pincer compounds in AD's copper ion-related oxidative stress framework. In this sense, four key aspects were considered: 1) Lipinski's rule of five, 2) blood-brain barrier permeation, 3) standard reduction potential (SRP) of the formed copper complexes, and 4) the ligand's affinity towards copper cations. The evaluation of these criteria was performed by means of bioinformatic tools and electronic structure calculations at the DFT level of theory. Our results suggest that two compounds from this set are potential antioxidant agents, whereas five of them are promissory distributor-like compounds in the context of AD.


Assuntos
Doença de Alzheimer , Cobre , Humanos , Cobre/química , Doença de Alzheimer/tratamento farmacológico , Ligantes , Estresse Oxidativo , Peptídeos beta-Amiloides/química , Metais
2.
J Alzheimers Dis ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37483007

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common form of dementia representing from 60% to 70% of the cases globally. It is a multifactorial disease that, among its many pathological characteristics, has been found to provoke the metal ion dysregulation in the brain, along with an increase in the oxidative stress. There is proof that metallic complexes formed by the amyloid-ß peptide (Aß) and extraneuronal copper can catalyze the production of reactive oxygen species, leading to an increase in oxidative stress, promoting neuronal death. Due to this interaction, bioavailable copper has become an important redox active target to consider within the search protocols of multifunctional agents for AD's treatment. OBJECTIVE: In this study, we examined by using bioinformatics and electronic structure calculations the potential application of 44 salen-type copper chelating ligands and 12 further proposed molecules as possible multifunctional agents in the context of AD. METHODS: The candidates were evaluated by combining bioinformatic tools and electronic structure calculations, which allowed us to classify the molecules as potential antioxidants, redistributor-like compounds, and the newly proposed suppressor mechanism. RESULTS: This evaluation demonstrate that salen-type ligands exhibit properties suitable for interfering in the chain of copper-induced oxidative stress reactions present in AD and potential redistributor and suppressor activity for copper ions. Finally, a novel set of plausible candidates is proposed and evaluated. CONCLUSION: According to the evaluated criteria, a subset of 13 salen-type candidates was found to exhibit promissory pharmacological properties in the AD framework and were classified according to three plausible action mechanisms.

3.
ACS Omega ; 8(5): 4508-4526, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36777601

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, affecting millions of people around the world. Even though the causes of AD are not completely understood due to its multifactorial nature, some neuropathological hallmarks of its development have been related to the high concentration of some metal cations. These roles include the participation of these metal cations in the production of reactive oxygen species, which have been involved in neuronal damage. In order to avoid the increment in the oxidative stress, multifunctional ligands used to coordinate these metal cations have been proposed as a possible treatment to AD. In this review, we present the recent advances in experimental and computational works aiming to understand the role of two redox active and essential transition-metal cations (Cu and Fe) and one nonbiological metal (Al) and the recent proposals on the development of multifunctional ligands to stop or revert the damaging effects promoted by these metal cations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...