Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 28(23): 5121-5135, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35993913

RESUMO

PURPOSE: IL2 immunotherapy has the potential to elicit immune-mediated tumor lysis via activation of effector immune cells, but clinical utility is limited due to pharmacokinetic challenges as well as vascular leak syndrome and other life-threatening toxicities experienced by patients. We developed a safe and clinically translatable localized IL2 delivery system to boost the potency of therapy while minimizing systemic cytokine exposure. EXPERIMENTAL DESIGN: We evaluated the therapeutic efficacy of IL2 cytokine factories in a mouse model of malignant mesothelioma. Changes in immune populations were analyzed using time-of-flight mass cytometry (CyTOF), and the safety and translatability of the platform were evaluated using complete blood counts and serum chemistry analysis. RESULTS: IL2 cytokine factories enabled 150× higher IL2 concentrations in the local compartment with limited leakage into the systemic circulation. AB1 tumor burden was reduced by 80% after 1 week of monotherapy treatment, and 7 of 7 of animals exhibited tumor eradication without recurrence when IL2 cytokine factories were combined with anti-programmed cell death protein 1 (aPD1). Furthermore, CyTOF analysis showed an increase in CD69+CD44+ and CD69-CD44+CD62L- T cells, reduction of CD86-PD-L1- M2-like macrophages, and a corresponding increase in CD86+PD-L1+ M1-like macrophages and MHC-II+ dendritic cells after treatment. Finally, blood chemistry ranges in rodents demonstrated the safety of cytokine factory treatment and reinforced its potential for clinical use. CONCLUSIONS: IL2 cytokine factories led to the eradication of aggressive mouse malignant mesothelioma tumors and protection from tumor recurrence, and increased the therapeutic efficacy of aPD1 checkpoint therapy. This study provides support for the clinical evaluation of this IL2-based delivery system. See related commentary by Palanki et al., p. 5010.


Assuntos
Mesotelioma Maligno , Mesotelioma , Camundongos , Animais , Antígeno B7-H1/imunologia , Interleucina-2/administração & dosagem , Citocinas , Mesotelioma/patologia , Imunidade Inata
2.
Sci Rep ; 12(1): 11416, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794145

RESUMO

Direct cell reprogramming represents a promising new myocardial regeneration strategy involving in situ transdifferentiation of cardiac fibroblasts into induced cardiomyocytes. Adult human cells are relatively resistant to reprogramming, however, likely because of epigenetic restraints on reprogramming gene activation. We hypothesized that modulation of the epigenetic regulator gene p63 could improve the efficiency of human cell cardio-differentiation. qRT-PCR analysis demonstrated significantly increased expression of a panel of cardiomyocyte marker genes in neonatal rat and adult rat and human cardiac fibroblasts treated with p63 shRNA (shp63) and the cardio-differentiation factors Hand2/Myocardin (H/M) versus treatment with Gata4, Mef2c and Tbx5 (GMT) with or without shp63 (p < 0.001). FACS analysis demonstrated that shp63+ H/M treatment of human cardiac fibroblasts significantly increased the percentage of cells expressing the cardiomyocyte marker cTnT compared to GMT treatment with or without shp63 (14.8% ± 1.4% versus 4.3% ± 1.1% and 3.1% ± 0.98%, respectively; p < 0.001). We further demonstrated that overexpression of the p63-transactivation inhibitory domain (TID) interferes with the physical interaction of p63 with the epigenetic regulator HDAC1 and that human cardiac fibroblasts treated with p63-TID+ H/M demonstrate increased cardiomyocyte marker gene expression compared to cells treated with shp63+ H/M (p < 0.05). Whereas human cardiac fibroblasts treated with GMT alone failed to contract in co-culture experiments, human cardiac fibroblasts treated with shp63+ HM or p63-TID+ H/M demonstrated calcium transients upon electrical stimulation and contractility synchronous with surrounding neonatal cardiomyocytes. These findings demonstrate that p63 silencing provides enhanced rat and human cardiac fibroblast transdifferentiation into induced cardiomyocytes compared to a standard reprogramming strategy. p63-TID overexpression may be a useful reprogramming strategy for overcoming epigenetic barriers to human fibroblast cardio-differentiation.


Assuntos
Miócitos Cardíacos , Proteínas com Domínio T , Animais , Reprogramação Celular , Epigênese Genética , Fibroblastos/metabolismo , Humanos , Proteínas de Membrana/genética , Miócitos Cardíacos/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Ratos , Proteínas com Domínio T/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Acta Biomater ; 149: 30-39, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35820592

RESUMO

Injectable intramyocardial biomaterials have promise to limit adverse ventricular remodeling through mechanical and biologic mechanisms. While some success has been observed by injecting materials to regenerate new tissue, optimal biomaterial stiffness to thicken and stiffen infarcted myocardium to limit adverse remodeling has not been determined. In this work, we present an in-vivo study of the impact of biomaterial stiffness over a wide range of stiffness moduli on ventricular mechanics. We utilized injectable methacrylated polyethylene glycol (PEG) hydrogels fabricated at 3 different mechanical moduli: 5 kPa (low), 25 kPa (medium/myocardium), and 250 kPa (high/supraphysiologic). We demonstrate that the supraphysiological high stiffness favorably alters post-infarct ventricular mechanics and prevents negative tissue remodeling. Lower stiffness materials do not alter mechanics and thus to be effective, must instead target biological reparative mechanisms. These results may influence rationale design criteria for biomaterials developed for infarct reinforcement therapy. STATEMENT OF SIGNIFICANCE: Acellular biomaterials for cardiac application can provide benefit via mechanical and biological mechanisms post myocardial infarction. We study the role of biomaterial mechanical characteristics on ventricular mechanics in myocardial infarcts. Previous studies have not measured the influence of injected biomaterials on ventricular mechanics, and consequently rational design criteria is unknown. By utilizing an in-vivo assessment of ventricular mechanics, we demonstrate that low stiffness biomaterial do not alter pathologic ventricular mechanics. Thus, to be effective, low stiffness biomaterials must target biological reparative mechanisms. Physiologic and supra-physiologic biomaterials favorably alter post-infarct mechanics and prevents adverse ventricular remodeling.


Assuntos
Infarto do Miocárdio , Remodelação Ventricular , Materiais Biocompatíveis/farmacologia , Ventrículos do Coração/patologia , Humanos , Infarto do Miocárdio/patologia , Miocárdio/patologia
4.
J Am Heart Assoc ; 10(24): e022659, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34889103

RESUMO

Background The conversion of fibroblasts into induced cardiomyocytes may regenerate myocardial tissue from cardiac scar through in situ cell transdifferentiation. The efficiency transdifferentiation is low, especially for human cells. We explored the leveraging of Hippo pathway intermediates to enhance induced cardiomyocyte generation. Methods and Results We screened Hippo effectors Yap (yes-associated protein), Taz (transcriptional activator binding domain), and Tead1 (TEA domain transcription factor 1; Td) for their reprogramming efficacy with cardio-differentiating factors Gata4, Mef2C, and Tbx5 (GMT). Td induced nearly 3-fold increased expression of cardiomyocyte marker cTnT (cardiac troponin T) by mouse embryonic and adult rat fibroblasts versus GMT administration alone (P<0.0001), while Yap and Taz failed to enhance cTnT expression. Serial substitution demonstrated that Td replacement of TBX5 induced the greatest cTnT expression enhancement and sarcomere organization in rat fibroblasts treated with all GMT substitutions (GMTd versus GMT: 17±1.2% versus 5.4±0.3%, P<0.0001). Cell contractility (beating) was seen in 6% of GMTd-treated cells by 4 weeks after treatment, whereas no beating GMT-treated cells were observed. Human cardiac fibroblasts likewise demonstrated increased cTnT expression with GMTd versus GMT treatment (7.5±0.3% versus 3.0±0.3%, P<0.01). Mechanistically, GMTd administration increased expression of the trimethylated lysine 4 of histone 3 (H3K4me3) mark at the promoter regions of cardio-differentiation genes and mitochondrial biogenesis regulator genes in rat and human fibroblast, compared with GMT. Conclusions These data suggest that the Hippo pathway intermediate Tead1 is an important regulator of cardiac reprogramming that increases the efficiency of maturate induced cardiomyocytes generation and may be a vital component of human cardiodifferentiation strategies.


Assuntos
Fibroblastos , Via de Sinalização Hippo , Miócitos Cardíacos , Fatores de Transcrição de Domínio TEA , Animais , Transdiferenciação Celular , Fibroblastos/fisiologia , Camundongos , Miócitos Cardíacos/fisiologia , Ratos , Fatores de Transcrição de Domínio TEA/metabolismo
5.
Sci Rep ; 11(1): 22605, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799643

RESUMO

Fibroblast reprogramming offers the potential for myocardial regeneration via in situ cell transdifferentiation. We explored a novel strategy leveraging endothelial cell plasticity to enhance reprogramming efficiency. Rat cardiac endothelial cells and fibroblasts were treated with Gata4, Mef2c, and Tbx5 (GMT) to assess the cardio-differentiation potential of these cells. The endothelial cell transdifferentiation factor ETV2 was transiently over-expressed in fibroblasts followed by GMT treatment to assess "trans-endothelial" cardio-differentiation. Endothelial cells treated with GMT generated more cTnT+ cells than did cardiac fibroblasts (13% ± 2% vs 4% ± 0.5%, p < 0.01). Cardiac fibroblasts treated with ETV2 demonstrated increased endothelial cell markers, and when then treated with GMT yielded greater prevalence of cells expressing cardiomyocyte markers including cTnT than did fibroblasts treated with GMT or ETV2 (10.3% ± 0.2% vs 1.7% ± 0.06% and 0.6 ± 0.03, p < 0.01). Rat cardiac fibroblasts treated with GMT + ETV2 demonstrated calcium transients upon electrical stimulation and contractility synchronous with surrounding neonatal cardiomyocytes, whereas cells treated with GMT or ETV2 alone failed to contract in co-culture experiments. Human cardiac fibroblasts treated with ETV2 and then GMT likewise demonstrated greater prevalence of cTnT expression than did cells treated with GMT alone (2.8-fold increase, p < 0.05). Cardiac fibroblast transitioning through a trans-endothelial state appears to enhance cardio-differentiation by enhancing fibroblast plasticity.


Assuntos
Transdiferenciação Celular , Reprogramação Celular , Endotélio/metabolismo , Fibroblastos/metabolismo , Animais , Animais Recém-Nascidos , Plasticidade Celular , Separação Celular , Técnicas de Cocultura , Células Endoteliais/metabolismo , Citometria de Fluxo , Humanos , Miócitos Cardíacos/metabolismo , Prevalência , Ratos
6.
Cardiovasc Eng Technol ; 12(2): 183-199, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33432513

RESUMO

PURPOSE: Cellular therapy with mesenchymal stem cells (MSCs) shows promise for restoring function after myocardial infarction (MI). However, cellular therapy has yet to be clinically translated, in part because of difficulty in studying how MSCs interact with the post-MI scar microenvironment. This study aimed to design an in vitro model to study MSC behavior in the post-MI scar stiffness microenvironment. METHODS: Using poly(ethylene glycol)-acrylate (PEG) conjugated to bioactive peptides, rat MSCs were encapsulated in hydrogels of varying stiffnesses and crosslinking densities. Cell viability was assessed through 14 days using calcein and ethidium homodimer staining. To simulate post-MI pro-fibrotic signaling, transforming growth factor-beta (TGFß) was added to selected cultures. Immunofluorescence and qRT-PCR were used to assess changes in cardiac transdifferentiation or paracrine secretion, two proposed methods of MSCs in cellular therapy. RESULTS: Bioactivated PEG hydrogels with stiffnesses between 1.6 and 151.0 kPa were prepared. Rat MSCs demonstrated up to 71.6% viability after 3 days of encapsulated culture, and survived within the hydrogels up to 14 days. Encapsulation decreased MSC expression of cardiac troponin T and most growth factors, except interleukin-6. Meanwhile, TGFß caused increased cardiac troponin T expression but decreased secreted factor expression. Varying hydrogel stiffness did not have an effect on cardiac troponin T or secreted factor expression. CONCLUSIONS: These findings suggest that a 3D microenvironment hinders two key mechanisms by which MSCs could improve cardiac function after post-MI scar formation, namely cardiac transdifferentiation and secreted factor production. Future studies incorporating MSCs other cell types should broaden understanding of the post-MI scar microenvironment.


Assuntos
Células-Tronco Mesenquimais , Infarto do Miocárdio , Animais , Sobrevivência Celular , Hidrogéis , Infarto do Miocárdio/terapia , Polietilenoglicóis , Ratos
7.
Biomater Sci ; 8(18): 5061-5070, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32797143

RESUMO

Paracrine factors secreted by mesenchymal stem cells (MSCs) have been previously shown to improve cardiac function following acute myocardial infarction (MI). However, cell therapy activates the innate immune response, leading to the rapid elimination of transplanted cells and only short-term therapeutic delivery. Herein, we describe a new strategy to deliver sustained paracrine-mediated MSC therapy to ischemic myocardium. Using an immune evasive, small molecule modified alginate, we encapsulated rat MSC cells in a core-shell hydrogel capsule and implanted them in the pericardial sac of post-MI rats. Encapsulated cells allowed diffusion of reparative paracrine factors at levels similar to non-encapsulated cells in vitro. Encapsulation enabled sustained cell survival with localization over the heart for 2 weeks. The effect of the experimental group on ventricular function and fibrosis was compared with blank (cell free) capsules and unencapsulated MSCs injected into infarcted myocardium. MSC capsules improved post-MI ventricular function ∼2.5× greater than MSC injection. After 4 weeks, post-MI fibrosis was reduced ∼2/3 with MSC capsules, but unchanged with MSC injection. MSC encapsulation with alginate core-shell capsules sustains cell survival and potentiates efficacy of therapy.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Infarto do Miocárdio , Alginatos , Animais , Infarto do Miocárdio/terapia , Miocárdio , Ratos
8.
J Am Heart Assoc ; 9(12): e015686, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32500803

RESUMO

Background Given known inefficiencies in reprogramming of fibroblasts into mature induced cardiomyocytes (iCMs), we sought to identify small molecules that would overcome these barriers to cardiac cell transdifferentiation. Methods and Results We screened alternative combinations of compounds known to impact cell reprogramming using morphologic and functional cell differentiation assays in vitro. After screening 6 putative reprogramming factors, we found that a combination of the histone deacetylase inhibitor sodium butyrate, the WNT inhibitor ICG-001, and the cardiac growth regulator retinoic acid (RA) maximally enhanced iCM generation from primary rat cardiac fibroblasts when combined with administration of the cardiodifferentiating transcription factors Gata4, Mef2C, and Tbx5 (GMT) compared with GMT administration alone (23±1.5% versus 3.3±0.2%; P<0.0001). Expression of the cardiac markers cardiac troponin T, Myh6, and Nkx2.5 was upregulated as early as 10 days after GMT-sodium butyrate, ICG-001, and RA treatment. Human iCM generation was likewise enhanced when administration of the human cardiac reprogramming factors GMT, Hand2, and Myocardin plus miR-590 was combined with sodium butyrate, ICG-001, and RA compared with GMT, Hand2, and Myocardin plus miR-590 treatment alone (25±1.3% versus 5.7±0.4%; P<0.0001). Rat and human iCMs also more frequently demonstrated spontaneous beating in coculture with neonatal cardiomyocytes with the addition of sodium butyrate, ICG-001, and RA to transcription factor cocktails compared with transcription factor treatment alone. Conclusions The combined administration of histone deacetylase and WNT inhibitors with RA enhances rat and human iCM generation induced by transcription factor administration alone. These findings suggest opportunities for improved translational approaches for cardiac regeneration.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Ácido Butírico/farmacologia , Transdiferenciação Celular/efeitos dos fármacos , Técnicas de Reprogramação Celular , Reprogramação Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Pirimidinonas/farmacologia , Tretinoína/farmacologia , Animais , Células Cultivadas , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Masculino , Miócitos Cardíacos/metabolismo , Fenótipo , Ratos Sprague-Dawley , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...