Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acad Med ; 99(4S Suppl 1): S89-S94, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38207081

RESUMO

PURPOSE: Successful implementation of precision education systems requires widespread adoption and seamless integration of new technologies with unique data streams that facilitate real-time performance feedback. This paper explores the use of sensor technology to quantify hands-on clinical skills. The goal is to shorten the learning curve through objective and actionable feedback. METHOD: A sensor-enabled clinical breast examination (CBE) simulator was used to capture force and video data from practicing clinicians (N = 152). Force-by-time markers from the sensor data and a machine learning algorithm were used to parse physicians' CBE performance into periods of search and palpation and then these were used to investigate distinguishing characteristics of successful versus unsuccessful attempts to identify masses in CBEs. RESULTS: Mastery performance from successful physicians showed stable levels of speed and force across the entire CBE and a 15% increase in force when in palpation mode compared with search mode. Unsuccessful physicians failed to search with sufficient force to detect deep masses ( F [5,146] = 4.24, P = .001). While similar proportions of male and female physicians reached the highest performance level, males used more force as noted by higher palpation to search force ratios ( t [63] = 2.52, P = .014). CONCLUSIONS: Sensor technology can serve as a useful pathway to assess hands-on clinical skills and provide data-driven feedback. When using a sensor-enabled simulator, the authors found specific haptic approaches that were associated with successful CBE outcomes. Given this study's findings, continued exploration of sensor technology in support of precision education for hands-on clinical skills is warranted.


Assuntos
Palpação , Médicos , Humanos , Masculino , Feminino , Programas de Rastreamento , Mãos
2.
Acad Med ; 99(4S Suppl 1): S14-S20, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38277444

RESUMO

ABSTRACT: The goal of medical education is to produce a physician workforce capable of delivering high-quality equitable care to diverse patient populations and communities. To achieve this aim amidst explosive growth in medical knowledge and increasingly complex medical care, a system of personalized and continuous learning, assessment, and feedback for trainees and practicing physicians is urgently needed. In this perspective, the authors build on prior work to advance a conceptual framework for such a system: precision education (PE).PE is a system that uses data and technology to transform lifelong learning by improving personalization, efficiency, and agency at the individual, program, and organization levels. PE "cycles" start with data inputs proactively gathered from new and existing sources, including assessments, educational activities, electronic medical records, patient care outcomes, and clinical practice patterns. Through technology-enabled analytics , insights are generated to drive precision interventions . At the individual level, such interventions include personalized just-in-time educational programming. Coaching is essential to provide feedback and increase learner participation and personalization. Outcomes are measured using assessment and evaluation of interventions at the individual, program, and organizational levels, with ongoing adjustment for repeated cycles of improvement. PE is rooted in patient, health system, and population data; promotes value-based care and health equity; and generates an adaptive learning culture.The authors suggest fundamental principles for PE, including promoting equity in structures and processes, learner agency, and integration with workflow (harmonization). Finally, the authors explore the immediate need to develop consensus-driven standards: rules of engagement between people, products, and entities that interact in these systems to ensure interoperability, data sharing, replicability, and scale of PE innovations.


Assuntos
Educação Médica , Medicina , Humanos , Educação Continuada , Escolaridade , Aprendizagem
3.
Acad Med ; 99(4S Suppl 1): S84-S88, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109654

RESUMO

ABSTRACT: Clinical touch is the cornerstone of the doctor-patient relationship and can impact patient experience and outcomes. In the current era, driven by an ever-increasing infusion of point-of-care technologies, physical exam skills have become undervalued. Moreover, touch and hands-on skills have been difficult to teach due to inaccurate assessments and difficulty with learning transfer through observation. In this article, the authors argue that haptics, the science of touch, provides a unique opportunity to explore new pathways to facilitate touch training. Furthermore, haptics can dramatically increase the density of touch-based assessments without increasing human rater burden-essential for realizing precision assessment. The science of haptics is reviewed, including the benefits of using haptics-informed language for objective structured clinical examinations. The authors describe how haptic devices and haptic language have and can be used to facilitate learning, communication, documentation and a much-needed reinvigoration of physical examination, and touch excellence at the point of care. The synergy of haptic devices, artificial intelligence, and virtual reality environments are discussed. The authors conclude with challenges of scaling haptic technology in medical education, such as cost and translational needs, and opportunities to achieve wider adoption of this transformative approach to precision education.


Assuntos
Tecnologia Háptica , Tato , Humanos , Inteligência Artificial , Relações Médico-Paciente , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA