Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Neurosci Methods ; : 110177, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38795978

RESUMO

BACKGROUND: Data on human brain function obtained with direct electrical stimulation (DES) in neurosurgical patients have been recently integrated and combined with modern neuroimaging techniques, allowing a connectome-based approach fed by intraoperative DES data. Within this framework is crucial to develop reliable methods for spatial localization of DES-derived information to be integrated within the neuroimaging workflow. NEW METHOD: To this aim, we applied the Kernel Density Estimation for modelling the distribution of DES sites from different patients into the MNI space. The algorithm has been embedded in a MATLAB-based User Interface, Peaglet. It allows an accurate probabilistic weighted and unweighted estimation of DES sites location both at cortical level, by using shortest path calculation along the brain 3D geometric topology, and subcortical level, by using a volume-based approach. RESULTS: We applied Peaglet to investigate spatial estimation of cortical and subcortical stimulation sites provided by recent brain tumour studies. The resulting NIfTI maps have been anatomically investigated with neuroimaging open-source tools. COMPARISON WITH EXISTING METHODS: Peaglet processes differently cortical and subcortical data following their distinguishing geometrical features, increasing anatomical specificity of DES-related results and their reliability within neuroimaging environments. CONCLUSIONS: Peaglet provides a robust probabilistic estimation of the cortical and subcortical distribution of DES sites going beyond a region of interest approach, respecting cortical and subcortical intrinsic geometrical features. Results can be easily integrated within the neuroimaging workflow to drive connectomic analysis.

2.
Brain ; 147(1): 297-310, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37715997

RESUMO

Despite human's praxis abilities are unique among primates, comparative observations suggest that these cognitive motor skills could have emerged from exploitation and adaptation of phylogenetically older building blocks, namely the parieto-frontal networks subserving prehension and manipulation. Within this framework, investigating to which extent praxis and prehension-manipulation overlap and diverge within parieto-frontal circuits could help in understanding how human cognition shapes hand actions. This issue has never been investigated by combining lesion mapping and direct electrophysiological approaches in neurosurgical patients. To this purpose, 79 right-handed left-brain tumour patient candidates for awake neurosurgery were selected based on inclusion criteria. First, a lesion mapping was performed in the early postoperative phase to localize the regions associated with an impairment in praxis (imitation of meaningless and meaningful intransitive gestures) and visuo-guided prehension (reaching-to-grasping) abilities. Then, lesion results were anatomically matched with intraoperatively identified cortical and white matter regions, whose direct electrical stimulation impaired the Hand Manipulation Task. The lesion mapping analysis showed that prehension and praxis impairments occurring in the early postoperative phase were associated with specific parietal sectors. Dorso-mesial parietal resections, including the superior parietal lobe and precuneus, affected prehension performance, while resections involving rostral intraparietal and inferior parietal areas affected praxis abilities (covariate clusters, 5000 permutations, cluster-level family-wise error correction P < 0.05). The dorsal bank of the rostral intraparietal sulcus was associated with both prehension and praxis (overlap of non-covariate clusters). Within praxis results, while resection involving inferior parietal areas affected mainly the imitation of meaningful gestures, resection involving intraparietal areas affected both meaningless and meaningful gesture imitation. In parallel, the intraoperative electrical stimulation of the rostral intraparietal and the adjacent inferior parietal lobe with their surrounding white matter during the hand manipulation task evoked different motor impairments, i.e. the arrest and clumsy patterns, respectively. When integrating lesion mapping and intraoperative stimulation results, it emerges that imitation of praxis gestures first depends on the integrity of parietal areas within the dorso-ventral stream. Among these areas, the rostral intraparietal and the inferior parietal area play distinct roles in praxis and sensorimotor process controlling manipulation. Due to its visuo-motor 'attitude', the rostral intraparietal sulcus, putative human homologue of monkey anterior intraparietal, might enable the visuo-motor conversion of the observed gesture (direct pathway). Moreover, its functional interaction with the adjacent, phylogenetic more recent, inferior parietal areas might contribute to integrate the semantic-conceptual knowledge (indirect pathway) within the sensorimotor workflow, contributing to the cognitive upgrade of hand actions.


Assuntos
Córtex Cerebral , Desempenho Psicomotor , Humanos , Desempenho Psicomotor/fisiologia , Filogenia , Lobo Parietal , Cognição , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Gestos
3.
Front Oncol ; 12: 963669, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249008

RESUMO

Objective: Safe resection of gliomas involving motor pathways in asleep-anesthesia requires the combination of brain mapping, to identify and spare essential motor sites, and continuous monitoring of motor-evoked potentials (MEPs), to detect possible vascular damage to the corticospinal tract (CST). MEP monitoring, according to intraoperative neurophysiology societies, is generally recommended by transcranial electrodes (TES), and no clear indications of direct cortical stimulation (DCS) or the preferential use of one of the two techniques based on the clinical context is available. The main aim of the study was to identify the best technique(s) based on different clinical conditions, evaluating the efficacy and prognostic value of both methodologies. Methods: A retrospective series of patients with tumors involving the motor pathways who underwent surgical resection with the aid of brain mapping and combined MEP monitoring via TES and DCS was evaluated. Irreversible MEP amplitude reduction (>50% compared to baseline) was used as an intraoperative warning and correlated to the postoperative motor outcome. Selectivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were computed for both techniques. Results: Four hundred sixty-two patients were retrospectively analyzed, and only 1.9% showed a long-term motor impairment. Both TES and DCS obtained high specificity and NPV for the acute and 1-month motor deficit. Sensitivity was rather low for the acute deficit but excellent considering the 1-month follow-up for both techniques. DCS was extremely reliable in predicting a postoperative motor decline (PPV of 100% and 90% for acute and long-term deficit, respectively). Conversely, TES produced a high number of false-positive results, especially for long-term deficits (65, 87.8% of all warnings) therefore obtaining poor PPV values (18% and 12% for acute and 1-month deficits, respectively). TES false-positive results were significantly associated with parietal tumors and lateral patient positioning. Conclusions: Data support the use of mapping and combined monitoring via TES and DCS. The sole TES monitoring is reliable in most procedures but not in parietal tumors or those requiring lateral positioning. Although no indications are available in international guidelines, DCS should be recommended, particularly for cases approached by a lateral position.

4.
Brain ; 145(4): 1535-1550, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34623420

RESUMO

The activity of frontal motor areas during hand-object interaction is coordinated by dense communication along specific white matter pathways. This architecture allows the continuous shaping of voluntary motor output but, despite extensive investigation in non-human primate studies, remains poorly understood in humans. Disclosure of this system is crucial for predicting and treatment of motor deficits after brain lesions. For this purpose, we investigated the effect of direct electrical stimulation on white matter pathways within the frontal lobe on hand-object manipulation. This was tested in 34 patients (15 left hemisphere, mean age 42 years, 17 male, 15 with tractography) undergoing awake neurosurgery for frontal lobe tumour removal with the aid of the brain mapping technique. The stimulation outcome was quantified based on hand-muscle activity required by task execution. The white matter pathways responsive to stimulation with an interference on muscles were identified by means of probabilistic density estimation of stimulated sites, tract-based lesion-symptom (disconnectome) analysis and diffusion tractography on the single patient level. Finally, we assessed the effect of permanent tract disconnection on motor outcome in the immediate postoperative period using a multivariate lesion-symptom mapping approach. The analysis showed that stimulation disrupted hand-muscle activity during task execution at 66 sites within the white matter below dorsal and ventral premotor regions. Two different EMG interference patterns associated with different structural architectures emerged: (i) an 'arrest' pattern, characterized by complete impairment of muscle activity associated with an abrupt task interruption, occurred when stimulating a white matter area below the dorsal premotor region. Local middle U-shaped fibres, superior fronto-striatal, corticospinal and dorsal fronto-parietal fibres intersected with this region. (ii) a 'clumsy' pattern, characterized by partial disruption of muscle activity associated with movement slowdown and/or uncoordinated finger movements, occurred when stimulating a white matter area below the ventral premotor region. Ventral fronto-parietal and inferior fronto-striatal tracts intersected with this region. Finally, only resections partially including the dorsal white matter region surrounding the supplementary motor area were associated with transient upper-limb deficit (P = 0.05; 5000 permutations). Overall, the results identify two distinct frontal white matter regions possibly mediating different aspects of hand-object interaction via distinct sets of structural connectivity. We suggest the dorsal region, associated with arrest pattern and postoperative immediate motor deficits, to be functionally proximal to motor output implementation, while the ventral region may be involved in sensorimotor integration required for task execution.


Assuntos
Mãos , Córtex Motor , Mapeamento Encefálico/métodos , Imagem de Tensor de Difusão , Lobo Frontal/fisiologia , Mãos/fisiologia , Humanos , Masculino , Córtex Motor/fisiologia , Músculo Esquelético/fisiologia , Vias Neurais/fisiologia
5.
J Neurosurg ; 136(1): 16-29, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34144525

RESUMO

OBJECTIVE: Resection of glioma in the nondominant hemisphere involving the motor areas and pathways requires the use of brain-mapping techniques to spare essential sites subserving motor control. No clear indications are available for performing motor mapping under either awake or asleep conditions or for the best mapping paradigm (e.g., resting or active, high-frequency [HF] or low-frequency [LF] stimulation) that provides the best oncological and functional outcomes when tailored to the clinical context. This work aimed to identify clinical and imaging factors that influence surgical strategy (asleep motor mapping vs awake motor mapping) and that are associated with the best functional and oncological outcomes and to design a "motor mapping score" for guiding tumor resection in this area. METHODS: The authors evaluated a retrospective series of patients with nondominant-hemisphere glioma-located or infiltrating within 2 cm anteriorly or posteriorly to the central sulcus and affecting the primary motor cortex, its fibers, and/or the praxis network-who underwent operations with asleep (HF monopolar probe) or awake (LF and HF probes) motor mapping. Clinical and imaging variables were used to design a motor mapping score. A prospective series of patients was used to validate this motor mapping score. RESULTS: One hundred thirty-five patients were retrospectively analyzed: 69 underwent operations with asleep (HF stimulation) motor mapping, and 66 underwent awake (LF and HF stimulation and praxis task evaluation) motor mapping. Previous motor (strength) deficit, previous treatment (surgery/radiotherapy), tumor volume > 30 cm3, and tumor involvement of the praxis network (on MRI) were identified and used to design the mapping score. Motor deficit, previous treatment, and location within or close to the central sulcus favor use of asleep motor mapping; large tumor volume and involvement of the praxis network favor use of awake motor mapping. The motor mapping score was validated in a prospective series of 52 patients-35 underwent operations with awake motor mapping and 17 with asleep motor mapping on the basis of the score indications-who had a low rate of postoperative motor-praxis deficit (3%) and a high extent of resection (median 97%; complete resection in > 70% of patients). CONCLUSIONS: Extensive resection of tumor involving the eloquent areas for motor control is feasible, and when an appropriate mapping strategy is applied, the incidence of postoperative motor-praxis deficit is low. Asleep (HF stimulation) motor mapping is preferable for lesions close to or involving the central sulcus and/or in patients with preoperative strength deficit and/or history of previous treatment. When a patient has no motor deficit or previous treatment and has a lesion (> 30 cm3) involving the praxis network, awake mapping is preferable.


Assuntos
Mapeamento Encefálico/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Glioma/diagnóstico por imagem , Glioma/cirurgia , Procedimentos Neurocirúrgicos/métodos , Sono , Vigília , Adolescente , Adulto , Idoso , Apraxias/etiologia , Apraxias/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Córtex Motor/cirurgia , Planejamento de Assistência ao Paciente , Complicações Pós-Operatórias/fisiopatologia , Reprodutibilidade dos Testes , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
6.
Neuroimage ; 248: 118839, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34963652

RESUMO

In primates, the parietal cortex plays a crucial role in hand-object manipulation. However, its involvement in object manipulation and related hand-muscle control has never been investigated in humans with a direct and focal electrophysiological approach. To this aim, during awake surgery for brain tumors, we studied the impact of direct electrical stimulation (DES) of parietal lobe on hand-muscles during a hand-manipulation task (HMt). Results showed that DES applied to fingers-representation of postcentral gyrus (PCG) and anterior intraparietal cortex (aIPC) impaired HMt execution. Different types of EMG-interference patterns were observed ranging from a partial (task-clumsy) or complete (task-arrest) impairment of muscles activity. Within PCG both patterns coexisted along a medio (arrest)-lateral (clumsy) distribution, while aIPC hosted preferentially the task-arrest. The interference patterns were mainly associated to muscles suppression, more pronounced in aIPC with respect to PCG. Moreover, within PCG were observed patterns with different level of muscle recruitment, not reported in the aIPC. Overall, EMG-interference patterns and their probabilistic distribution suggested the presence of different functional parietal sectors, possibly playing different roles in hand-muscle control during manipulation. We hypothesized that task-arrest, compared to clumsy patterns, might suggest the existence of parietal sectors more closely implicated in shaping the motor output.


Assuntos
Estimulação Elétrica , Mãos/fisiologia , Atividade Motora/fisiologia , Músculo Esquelético/fisiologia , Lobo Parietal/fisiologia , Córtex Somatossensorial/fisiologia , Adulto , Idoso , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
Front Oncol ; 11: 662039, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34094955

RESUMO

OBJECTIVE: At present, it is not clear whether Mood Disorders (MD) and poor Health Related Quality of Life (HRQoL) in the glioma population correlate with features of the tumor, or rather with secondary symptoms associated with treatment. The aim of this study was to assess the prevalence of MD and decline in HRQoL in glioma patients, and to determine the main factors associated with these two variables. METHODS: 80 patients affected by lower-grade gliomas (LGGs) and 65 affected by high-grade gliomas (HGGs) were evaluated, from admission up to 12 months after surgery, for MD, HRQoL, clinical characteristics, and cognitive functions. Independent factors associated with MD and low HRQoL were identified by using bivariate analysis. RESULTS: Data showed that prevalence of low HRQoL was comparable in both groups during all the time points assessed (pre, 1, 3, 6 and 12 months after surgery). In contrast at 6 months following surgery, HGGs showed a higher prevalence of MD compared to LGGs;. Bivariate analysis revealed that factors associated with MD and HRQoL in LGGs and HGGs were different over the course of the disease. In LGGs, from the pre-operative period to one year post surgery, MD and low HRQOL were associated with the occurrence of cognitive deficits and, from the third month after surgery onward, they were also associated with the effect exerted by adjuvant treatments. In HGGs, MD were associated with cognitive deficits at 3 and 6 months after surgery, along with older age (65-75 years); HRQoL, in its Physical component in particular, was associated with older age only from 6 months after surgery. CONCLUSION: Factors associated with MD and low HRQoL were different in LGGs and HGGs over the course of the disease. In LGGs the effect of adjuvant treatments was prominent in determining the prevalence of both MD and poor HRQoL from the third month after surgery onward. In HGGs, MD and HRQoL were associated with age, at 3 and 6 months after surgery. In both, the occurrence of cognitive deficits was significantly associated with MD.

8.
J Neurosci ; 41(19): 4223-4233, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33827936

RESUMO

Fine motor skills rely on the control of hand muscles exerted by a region of primary motor cortex (M1) that has been extensively investigated in monkeys. Although neuroimaging enables the exploration of this system also in humans, indirect measurements of brain activity prevent causal definitions of hand motor representations, which can be achieved using data obtained during brain mapping in tumor patients. High-frequency direct electrical stimulation delivered at rest (HF-DES-Rest) on the hand-knob region of the precentral gyrus has identified two sectors showing differences in cortical excitability. Using quantitative analysis of motor output elicited with HF DES-Rest, we characterized two sectors based on their excitability, higher in the posterior and lower in the anterior sector. We studied whether the different cortical excitability of these two regions reflected differences in functional connectivity (FC) and structural connectivity (SC). Using healthy adults from the Human Connectome Project (HCP), we computed FC and SC of the anterior and the posterior hand-knob sectors identified within a large cohort of patients. The comparison of FC of the two seeds showed that the anterior hand-knob, relative to the posterior hand-knob, showed stronger functional connections with a bilateral set of parietofrontal areas responsible for integrating perceptual and cognitive hand-related sensorimotor processes necessary for goal-related actions. This was reflected in different patterns of SC between the two sectors. Our results suggest that the human hand-knob is a functionally and structurally heterogeneous region organized along a motor-cognitive gradient.SIGNIFICANCE STATEMENT The capability to perform complex manipulative tasks is one of the major characteristics of primates and relies on the fine control of hand muscles exerted by a highly specialized region of the precentral gyrus, often termed the "hand-knob" sector. Using intraoperative brain mapping, we identify two hand-knob sectors (posterior and anterior) characterized by differences in cortical excitability. Based on resting-state functional connectivity (FC) and tractography in healthy subjects, we show that posterior and anterior hand-knob sectors differ in their functional connectivity (FC) and structural connectivity (SC) with frontoparietal regions. Thus, anteroposterior differences in cortical excitability are paralleled by differences in FC and SC that likely reflect a motor (posterior) to cognitive (anterior) organization of this cortical region.


Assuntos
Mãos/fisiologia , Destreza Motora/fisiologia , Músculo Esquelético/fisiologia , Adolescente , Adulto , Idoso , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Cognição , Conectoma , Potencial Evocado Motor/fisiologia , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiologia , Mãos/inervação , Humanos , Período Intraoperatório , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor , Músculo Esquelético/inervação , Vias Neurais/fisiologia , Estimulação Transcraniana por Corrente Contínua , Percepção Visual/fisiologia , Adulto Jovem
9.
Front Oncol ; 11: 629166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828981

RESUMO

OBJECTIVE: Giant insular tumors are commonly not amenable to complete resection and are associated with a high postoperative morbidity rate. Transcortical approach and brain mapping techniques allow to identify peri-insular functional networks and, with neurophysiological monitoring, to reduce vascular-associated insults. Cognitive functions to be mapped are still under debate, and the analysis of the functional risk of surgery is currently limited to neurological examination. This work aimed to investigate the neurosurgical outcome (extent of resection, EOR) and functional impact of giant insular gliomas resection, focusing on neuropsychological and Quality of Life (QoL) outcomes. METHODS: In our retrospective analysis, we included all patients admitted in a five-year period with a radiological diagnosis of giant insular glioma. A transcortical approach was adopted in all cases. Resections were pursued up to functional boundaries defined intraoperatively by brain mapping techniques. We examined clinical, radiological, and intra-operative factors possibly affecting EOR and postoperative neurological, neuropsychological, and Quality of Life (QoL) outcomes. RESULTS: We finally enrolled 95 patients in the analysis. Mean EOR was 92.3%. A Gross Total Resection (GTR) was obtained in 70 cases (73.7%). Five patients reported permanent morbidity (aphasia in 3, 3.2%, and superior quadrantanopia in 2, 2.1%). Suboptimal EOR associated with poor seizures control postoperatively. Extensive intraoperative mapping (inclusive of cognitive, visual, and haptic functions) decreased long-term neurological, neuropsychological, and QoL morbidity and increased EOR. Tumor infiltration of deep perforators (vessels arising either medial to lenticulostriate arteries through the anterior perforated substance or from the anterior choroidal artery) associated with a higher chance of postoperative ischemia in consonant areas, with the persistence of new-onset motor deficits 1-month post-op, and with minor EOR. Ischemic insults in eloquent sites represented the leading factor for long-term neurological and neuropsychological morbidity. CONCLUSION: In giant insular gliomas, the use of a transcortical approach with extensive brain mapping under awake anesthesia ensures broad insular exposure and extension of the surgical resection preserving patients' functional integrity. The relation between tumor mass and deep perforators predicts perioperative ischemic insults, the most relevant risk factor for long-term and permanent postoperative morbidity.

10.
Cortex ; 137: 194-204, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33640851

RESUMO

A negative motor response (NMR) is defined as the inability to continue voluntary movements without losing consciousness when direct electrical stimulation (DES) is applied during awake neurosurgery. While visual inspection is most commonly used to define an NMR, the actual effect of stimulation on muscle activity has been neglected by recent neurosurgical literature. We show that behavioral assessment of NMRs hides different site-dependent effects on muscles as revealed by electromyography (EMG), describing ten cases of brain tumor patients undergoing awake neurosurgery while performing a hand-object manipulation task. DES-induced NMRs were assessed behaviorally and related to the underlying electromyographic recording. Quantitative analysis of motor unit recruitment and regularity between phasic muscle contractions was computed. We show that similar NMRs classified based on behavioral criteria can be associated with suppression, increased recruitment or mixed effects on ongoing hand muscles. In some cases, suppression of hand muscle activity is associated with involuntary recruitment of muscles not involved in the task. Interestingly, stimulation of behaviorally defined "negative areas" across the frontal and parietal lobes elicits different electromyographic patterns, depending on the stimulation site. This study provides novel preliminary background as to the heterogeneous profile of muscle activity during NMRs. In fact, EMG monitoring paired with behavioral assessment can distinguish between NMRs that, despite similarity on behavioral inspection, are different in their related EMG, possibly underlying different neural substrates. The identification of different circuits hidden in similar NMRs may become relevant when planning the extension of resection.


Assuntos
Mãos , Músculo Esquelético , Estimulação Elétrica , Eletromiografia , Humanos , Contração Muscular
11.
Neurosurgery ; 88(3): 457-467, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33476393

RESUMO

Resection of brain tumors involving motor areas and pathways requires the identification and preservation of various cortical and subcortical structures involved in motor control at the time of the procedure, in order to maintain the patient's full motor capacities. The use of brain mapping techniques has now been integrated into clinical practice for many years, as they help the surgeon to identify the neural structures involved in motor functions. A common definition of motor function, as well as knowledge of its neural organization, has been continuously evolving, underlining the need for implementing intraoperative strategies at the time of the procedure. Similarly, mapping strategies have been subjected to continuous changes, enhancing the likelihood of preservation of full motor capacities. As a general rule, the motor mapping strategy should be as flexible as possible and adapted strictly to the individual patient and clinical context of the tumor. In this work, we present an overview of current knowledge of motor organization, indications for motor mapping, available motor mapping, and monitoring strategies, as well as their advantages and limitations. The use of motor mapping improves resection and outcomes in patients harboring tumors involving motor areas and pathways, and should be considered the gold standard in the resection of this type of tumor.


Assuntos
Mapeamento Encefálico/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Monitorização Neurofisiológica Intraoperatória/métodos , Córtex Motor/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Feminino , Glioma/cirurgia , Humanos , Masculino , Córtex Motor/cirurgia
12.
Neuro Oncol ; 23(5): 812-826, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33049063

RESUMO

BACKGROUND: Supratotal resection is advocated in lower-grade gliomas (LGGs) based on theoretical advantages but with limited verification of functional risk and data on oncological outcomes. We assessed the association of supratotal resection in molecularly defined LGGs with oncological outcomes. METHODS: Included were 460 presumptive LGGs; 404 resected; 347 were LGGs, 319 isocitrate dehydrogenase (IDH)-mutated, 28 wildtype. All patients had clinical, imaging, and molecular data. Resection aimed at supratotal resection without any patient or tumor a priori selection. The association of extent of resection (EOR), categorized on volumetric fluid attenuated inversion recovery images as residual tumor volume, along with postsurgical management with progression-free survival (PFS), malignant (M)PFS, and overall survival (OS) assessed by univariate, multivariate, and propensity score analysis. The study mainly focused on IDH-mutated LGGs, the "typical LGGs." RESULTS: Median follow-up was 6.8 years (interquartile range, 5-8). Out of 319 IDH-mutated LGGs, 190 (59.6%) progressed, median PFS: 4.7 years (95% CI: 4-5.3). Total and supratotal resection obtained in 39% and 35% of patients with IDH1-mutated tumors. In IDH-mutated tumors, most patients in the partial/subtotal group progressed, 82.4% in total, only 6 (5.4%) in supratotal. Median PFS was 29 months (95% CI: 25-36) in subtotal, 46 months (95% CI: 38-48) in total, while at 92 months, PFS in supratotal was 94.0%. There was no association with molecular subtypes and grade. At random forest analysis, PFS strongly associated with EOR, radiotherapy, and previous treatment. In the propensity score analysis, EOR associated with PFS (hazard ratio, 0.03; 95% CI: 0.01-0.13). MPFS occurred in 32.1% of subtotal total groups; 1 event in supratotal. EOR, grade III, previous treatment correlated to MPFS. At random forest analysis, OS associated with EOR as well. CONCLUSIONS: Supratotal resection strongly associated with PFS, MPFS, and OS in LGGs, regardless of molecular subtypes and grade, right from the beginning of clinical presentation.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Glioma/genética , Glioma/cirurgia , Humanos , Isocitrato Desidrogenase/genética , Intervalo Livre de Progressão , Resultado do Tratamento
13.
Front Oncol ; 10: 1485, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983985

RESUMO

Objective: The intraoperative identification and preservation of optic radiations (OR) during tumor resection requires the patient to be awake. Different tasks are used. However, they do not grant the maintenance of foveal vision during all testing, limiting the ability to constantly monitor the peripheral vision and to inform about the portion of the peripheral field that is encountered. Although hemianopia can be prevented, quadrantanopia cannot be properly avoided. To overcome these limitations, we developed an intra-operative Visual field Task (iVT) to monitor the foveal vision, alerting about the likelihood of injuring the OR during task administration, and to inform about the portion of the peripheral field that is explored. Data on feasibility and efficacy in preventing visual field deficits are reported, comparing the outcome with the standard available task (Double-Picture-Naming-Task, DPNT). Methods: Patients with a temporal and/or parietal lobe tumor in close morphological relationship with the OR, or where the resection can involve the OR at any extent, without pre-operative visual-field deficits (Humphrey) were enrolled. Fifty-four patients were submitted to iVT, 38 to DPNT during awake surgery with brain mapping neurophysiological techniques. Feasibility was assessed as ease of administration, training and mapping time, and ability to alert about the loss of foveal vision. Type and location of evoked interferences were registered. Functional outcome was evaluated by manual and Humphrey test; extent of resection was recorded. Tractography was performed in a sample of patients to compare patient anatomy with intraoperative stimulation site(s). Results: The test was easy to administer and detected the loss of foveal vision in all cases. Stimulation induced visual-field interferences, detected in all patients, classified as detection or discrimination errors. Detection was mostly observed in temporal tumors, discrimination in temporo-parietal ones. Immediate visual disturbances in DPNT group were registered in 84 vs. 24% of iVT group. At 1-month Humphrey evaluation, 26% of iVT vs. 63% of DPNT had quadrantanopia (32% symptomatic); 10% of DPNT had hemianopia. EOR was similar. Detection errors were induced for stimulation of OR; discrimination also for other visual processing tract (ILF). Conclusion: iVT was feasible and sensitive to preserve the functional integrity of the OR.

14.
Cortex ; 128: 297-311, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32362441

RESUMO

Strong right-hand preference on the population level is a uniquely human feature, although its neural basis is still not clearly defined. Recent behavioural and neuroimaging literature suggests that hand preference may be related to the orchestrated function and size of fronto-parietal white matter tracts bilaterally. Lesions to these tracts induced during tumour resection may provide an opportunity to test this hypothesis. In the present study, a cohort of seventeen neurosurgical patients with left hemisphere brain tumours were recruited to investigate whether resection of certain white matter tracts affects the choice of hand selected for the execution of a goal-directed task (assembly of jigsaw puzzles). Patients performed the puzzles, but also tests for basic motor ability, selective attention and visuo-constructional ability, preoperatively and one month after surgery. An atlas-based disconnectome analysis was conducted to evaluate whether resection of tracts was significantly associated with changes in hand selection. Diffusion tractography was also used to dissect fronto-parietal tracts (the superior longitudinal fasciculus) and the corticospinal tract. Results showed a shift in hand selection despite the absence of any motor or cognitive deficits, which was significantly associated with frontal and parietal resections rather than other lobes. In particular, the shift in hand selection was significantly associated with the resection of dorsal rather than ventral fronto-parietal white matter connections. Dorsal white matter pathways contribute bilaterally to control of goal-directed hand movements. We show that unilateral lesions, that may unbalance the cooperation of the two hemispheres, can alter the choice of hand selected to accomplish movements.


Assuntos
Neurocirurgia , Substância Branca , Imagem de Tensor de Difusão , Humanos , Rede Nervosa , Vias Neurais , Procedimentos Neurocirúrgicos , Substância Branca/diagnóstico por imagem
15.
Front Neurosci ; 14: 225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296301

RESUMO

BACKGROUND: MR Tractography enables non-invasive preoperative depiction of language subcortical tracts, which is crucial for the presurgical work-up of brain tumors; however, it cannot evaluate the exact function of the fibers. PURPOSE: A systematic pipeline was developed to combine tractography reconstruction of language fiber bundles, based on anatomical landmarks (Anatomical-T), with language fMRI cortical activations. A fMRI-targeted Tractography (fMRI-T) was thus obtained, depicting the subsets of the anatomical tracts whose endpoints are located inside a fMRI activation. We hypothesized that fMRI-T could provide additional functional information regarding the subcortical structures, better reflecting the eloquent white matter structures identified intraoperatively. METHODS: Both Anatomical-T and fMRI-T of language fiber tracts were performed on 16 controls and preoperatively on 16 patients with left-hemisphere brain tumors, using a q-ball residual bootstrap algorithm based on High Angular Resolution Diffusion Imaging (HARDI) datasets (b = 3000 s/mm2; 60 directions); fMRI ROIs were obtained using picture naming, verbal fluency, and auditory verb generation tasks. In healthy controls, normalized MNI atlases of fMRI-T and Anatomical-T were obtained. In patients, the surgical resection of the tumor was pursued by identifying eloquent structures with intraoperative direct electrical stimulation mapping and extending surgery to the functional boundaries. Post-surgical MRI allowed to identify Anatomical-T and fMRI-T non-eloquent portions removed during the procedure. RESULTS: MNI Atlases showed that fMRI-T is a subset of Anatomical-T, and that different task-specific fMRI-T involve both shared subsets and task-specific subsets - e.g., verbal fluency fMRI-T strongly involves dorsal frontal tracts, consistently with the phonogical-articulatory features of this task. A quantitative analysis in patients revealed that Anatomical-T removed portions of AF-SLF and IFOF were significantly greater than verbal fluency fMRI-T ones, suggesting that fMRI-T is a more specific approach. In addition, qualitative analyses showed that fMRI-T AF-SLF and IFOF predict the exact functional limits of resection with increased specificity when compared to Anatomical-T counterparts, especially the superior frontal portion of IFOF, in a subcohort of patients. CONCLUSION: These results suggest that performing fMRI-T in addition to the 'classic' Anatomical-T may be useful in a preoperative setting to identify the 'high-risk subsets' that should be spared during the surgical procedure.

16.
Nat Commun ; 11(1): 705, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019940

RESUMO

A challenge for neuroscience is to understand the conscious and unconscious processes underlying construction of willed actions. We investigated the neural substrate of human motor awareness during awake brain surgery. In a first experiment, awake patients performed a voluntary hand motor task and verbally monitored their real-time performance, while different brain areas were transiently impaired by direct electrical stimulation (DES). In a second experiment, awake patients retrospectively reported their motor performance after DES. Based on anatomo-clinical evidence from motor awareness disorders following brain damage, the premotor cortex (PMC) was selected as a target area and the primary somatosensory cortex (S1) as a control area. In both experiments, DES on both PMC and S1 interrupted movement execution, but only DES on PMC dramatically altered the patients' motor awareness, making them unconscious of the motor arrest. These findings endorse PMC as a crucial hub in the anatomo-functional network of human motor awareness.


Assuntos
Córtex Motor/fisiologia , Adulto , Conscientização , Mapeamento Encefálico , Estimulação Elétrica , Feminino , Mãos/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Atividade Motora , Córtex Motor/química , Estudos Retrospectivos , Estimulação Magnética Transcraniana , Comportamento Verbal
17.
Neuroimage ; 204: 116215, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557544

RESUMO

The development of awake intraoperative brain-mapping procedures for resection of brain tumors is of growing interest in neuroscience, because it enables direct testing of brain tissue, previously only possible in non-human primates. In a recent study performed in this setting specific effects can be induced by direct electrical stimulation on different sectors of premotor cortex during the execution of a hand manipulation task. Specifically, direct electrical stimulation applied on a dorsal sector of precentral cortex led to an increase in motor unit recruitment in hand muscles during execution of a hand manipulation task (Recruitment sector). The opposite effect was elicited when electrical stimulation was delivered more ventrally on the precentral cortex (Suppression sector). We studied whether the different effects on motor behavior induced by direct electrical stimulation applied on the two sites of the precentral cortex underlie differences in their functional connectivity with other brain areas, measured using resting state fMRI. Using healthy adults scanned as part of the Human Connectome Project, we computed the functional connectivity of each sector used as seeds. The functional connectivity patterns of the two intraoperative seeds was similar but cross-comparison revealed that the left and right Recruitment sectors had stronger functional connections with the hand region of the sensorimotor cortex, while the right Suppression region displayed stronger functional connectivity with a bilateral set of parieto-frontal areas crucial for the integration of perceptual and cognitive hand-related sensorimotor processes required for goal-related hand actions. Our results suggest that analyzing data obtained in the intraoperative setting with resting state functional magnetic resonance imaging in healthy brains can yield useful insight into the roles of different premotor sectors directly involved in hand-object interaction.


Assuntos
Neoplasias Encefálicas/cirurgia , Conectoma , Lobo Frontal/fisiologia , Mãos/fisiologia , Atividade Motora/fisiologia , Músculo Esquelético/fisiologia , Rede Nervosa/fisiologia , Recrutamento Neurofisiológico/fisiologia , Córtex Sensório-Motor/fisiologia , Adolescente , Adulto , Idoso , Estimulação Elétrica , Lobo Frontal/diagnóstico por imagem , Humanos , Monitorização Neurofisiológica Intraoperatória , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Rede Nervosa/diagnóstico por imagem , Córtex Sensório-Motor/diagnóstico por imagem , Adulto Jovem
18.
Cereb Cortex ; 30(1): 391-405, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31504261

RESUMO

Dorsal and ventral premotor (dPM and vPM) areas are crucial in control of hand muscles during object manipulation, although their respective role in humans is still debated. In patients undergoing awake surgery for brain tumors, we studied the effect of direct electrical stimulation (DES) of the premotor cortex on the execution of a hand manipulation task (HMt). A quantitative analysis of the activity of extrinsic and intrinsic hand muscles recorded during and in absence of DES was performed. Results showed that DES applied to premotor areas significantly impaired HMt execution, affecting task-related muscle activity with specific features related to the stimulated area. Stimulation of dorsal vPM induced both a complete task arrest and clumsy task execution, characterized by general muscle suppression. Stimulation of ventrocaudal dPM evoked a complete task arrest mainly due to a dysfunctional recruitment of hand muscles engaged in task execution. These results suggest that vPM and dPM contribute differently to the control of hand muscles during object manipulation. Stimulation of both areas showed a significant impact on motor output, although the different effects suggest a stronger relationship of dPM with the corticomotoneuronal circuit promoting muscle recruitment and a role for vPM in supporting sensorimotor integration.


Assuntos
Mãos/fisiologia , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Músculo Esquelético/fisiologia , Adulto , Idoso , Estimulação Elétrica , Eletromiografia , Força da Mão , Humanos , Pessoa de Meia-Idade
19.
Int J Radiat Oncol Biol Phys ; 105(5): 1095-1105, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31479701

RESUMO

PURPOSE: This prospective phase II study assessed safety and feasibility of surgery followed by hypofractionated radiosurgery (HSRS) on the tumor bed in oligometastatic patients with single large brain metastases (BMs). METHODS AND MATERIALS: Between June 2015 and May 2018, 101 patients were enrolled. Oligometastatic disease was defined by a maximum of 5 extracranial metastatic lesions. HSRS was performed within 1 month of surgery and consisted of 30 Gy in 3 fractions. Local control, occurrence of new BMs, overall survival, and treatment-related toxicities were assessed. RESULTS: At a median follow-up time of 26 months, local recurrence occurred in 6 patients (5.9%). Six-month, 1-year, and 2-year local control rates were 100%, 98.9% ± 1.1%, and 85.9% ± 0.6%, respectively. New BMs occurred in 39 patients (38.6%); median brain distant progression time and 6-month, 1-year, and 2-year brain distant progression rates were 39 months (95% CI, 19-39 months), 17% ± 3.7%, 31.4% ± 4.8%, and 42.5% ± 5.9%, respectively. At the last observation time, 50 patients (49.5%) were alive and 51 (50.5%) were dead; 10 patients died owing to neurologic causes and 40 as a result of systemic progression. Median overall survival time and 6-month, 1-year, and 2-year overall survival rates were 22 months (95% CI, 20-30 months), 95% ± 2.1%, 81.9% ± 3.8%, and 46.6% ± 6%, respectively. Infratentorial site, residual tumor volume, longer interval time between primary diagnosis and occurrence of BMs, and oligometastatic disease status significantly influenced outcome. Grade 2 to 3 radionecrosis occurred in 26 patients. Neurocognitive functions remained stable or, in some cases, improved. CONCLUSIONS: Surgery followed by HSRS on the tumor bed is a safe and effective approach, affording good brain control with acceptable toxicities. As for extracranial metastatic sites, patients with BMs can benefit from local ablative treatment in the context of an oligometastatic disease.


Assuntos
Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Radiocirurgia/métodos , Adulto , Idoso , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/secundário , Causas de Morte , Terapia Combinada/métodos , Progressão da Doença , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Neoplasia Residual , Transtornos Neurocognitivos/diagnóstico , Complicações Pós-Operatórias/etiologia , Estudos Prospectivos , Hipofracionamento da Dose de Radiação , Lesões por Radiação/etiologia , Taxa de Sobrevida , Fatores de Tempo , Carga Tumoral
20.
J Neurosurg ; : 1-13, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31398706

RESUMO

OBJECTIVE: Brain mapping techniques allow one to effectively approach tumors involving the primary motor cortex (M1). Tumor resectability and maintenance of patient integrity depend on the ability to successfully identify motor tracts during resection by choosing the most appropriate neurophysiological paradigm for motor mapping. Mapping with a high-frequency (HF) stimulation technique has emerged as the most efficient tool to identify motor tracts because of its versatility in different clinical settings. At present, few data are available on the use of HF for removal of tumors predominantly involving M1. METHODS: The authors retrospectively analyzed a series of 102 patients with brain tumors within M1, by reviewing the use of HF as a guide. The neurophysiological protocols adopted during resections were described and correlated with patients' clinical and tumor imaging features. Feasibility of mapping, extent of resection, and motor function assessment were used to evaluate the oncological and functional outcome to be correlated with the selected neurophysiological parameters used for guiding resection. The study aimed to define the most efficient protocol to guide resection for each clinical condition. RESULTS: The data confirmed HF as an efficient tool for guiding resection of M1 tumors, affording 85.3% complete resection and only 2% permanent morbidity. HF was highly versatile, adapting the stimulation paradigm and the probe to the clinical context. Three approaches were used. The first was a "standard approach" (HF "train of 5," using a monopolar probe) applied in 51 patients with no motor deficit and seizure control, harboring a well-defined tumor, showing contrast enhancement in most cases, and reaching the M1 surface. Complete resection was achieved in 72.5%, and 2% had permanent morbidity. The second approach was an "increased train approach," that is, an increase in the number of pulses (7-9) and of pulse duration, using a monopolar probe. This second approach was applied in 8 patients with a long clinical history, previous treatment (surgery, radiation therapy, chemotherapy), motor deficit at admission, poor seizure control, and mostly high-grade gliomas or metastases. Complete resection was achieved in 87.5% using this approach, along with 0% permanent morbidity. The final approach was a "reduced train approach," which was the combined use of train of 2 or train of 1 pulses associated with the standard approach, using a monopolar or bipolar probe. This approach was used in 43 patients with a long clinical history and poorly controlled seizures, harboring tumors with irregular borders without contrast enhancement (low or lower grade), possibly not reaching the cortical surface. Complete resection was attained in 88.4%, and permanent morbidity was found in 2.3%. CONCLUSIONS: Resection of M1 tumors is feasible and safe. By adapting the stimulation paradigm and probe appropriately to the clinical context, the best resection and functional results can be achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...