Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 678(Pt C): 766-775, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39307064

RESUMO

The rapid, precise identification and quantification of specific biomarkers, toxins, or pathogens is currently a key strategy for achieving more efficient diagnoses. Herein a dopamine-biotin monomer was synthetized and oxidized in the presence of hexamethylenediamine, to obtain adhesive coatings based on polydopamine-biotin (PDA-BT) on different materials to be used in targeted molecular therapy. Insight into the structure of the PDA-BT coating was obtained by solid-state 13C NMR spectroscopy acquired, for the first time, directly onto the coating, deposited on alumina spheres. The receptor binding capacity of the PDA-BT coating toward 4-hydroxyazobenzene-2-carboxylic acid/Avidin complex was verified by means of UV-vis spectroscopy. Different deposition cycles of avidin onto the PDA-BT coating by layer-by-layer assembly showed that the film retains its receptor binding capacity for at least eight consecutive cycles. Finally, the feasibility of PDA-BT coating to recognize cell lines with different grade of overexpression of biotin receptors (BR) was investigated by tumor cell capture experiments by using MCF-7 (BR+) and HL-60 (BR-) cell lines. The results show that the developed system can selectively capture MCF-7 cells indicating that it could represent a first approach for the development of future more sophisticated biosensors easily accessible, low cost and recyclable with the dual and rapid detection of both proteins and cells.

2.
Molecules ; 29(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39125116

RESUMO

The human body synthesizes catecholamine neurotransmitters, such as dopamine and noradrenaline. Monitoring the levels of these molecules is crucial for the prevention of important diseases, such as Alzheimer's, schizophrenia, Parkinson's, Huntington's, attention-deficit hyperactivity disorder, and paragangliomas. Here, we have synthesized, characterized, and functionalized the BODIPY core with picolylamine (BDPy-pico) in order to create a sensor capable of detecting these biomarkers. The sensing properties of the BDPy-pico probe in solution were studied using fluorescence titrations and supported by DFT studies. Catecholamine sensing was also performed in the solid state by a simple strip test, using an optical fiber as the detector of emissions. In addition, the selectivity and recovery of the sensor were assessed, suggesting the possibility of using this receptor to detect dopamine and norepinephrine in human saliva.


Assuntos
Compostos de Boro , Catecolaminas , Corantes Fluorescentes , Compostos de Boro/química , Humanos , Catecolaminas/análise , Corantes Fluorescentes/química , Saliva/química , Dopamina/análise , Norepinefrina/análise , Espectrometria de Fluorescência/métodos , Técnicas Biossensoriais/métodos
3.
Polymers (Basel) ; 16(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125126

RESUMO

A hydrogel formulation of 2-hydroxy ethyl methacrylate (HEMA) containing covalently linked magnetite nanoparticles was developed to actively facilitate the selective removal and photocatalytic degradation of antibiotics. To this purpose, the hybrid materials were molecularly imprinted with Lomefloxacin (Lome) or Ciprofloxacin (Cipro), achieving a selectivity of 60% and 45%, respectively, starting from a solution of XX concentration. After the adsorption, the embedded magnetite was used with the double function of (i) magnetically removing the material from water and (ii) triggering photo-Fenton (PF) reactions assisted by UVA light and H2O2 to oxidize the captured antibiotic. The success of the material design was confirmed by a comprehensive characterization of the system from chemical-physical and morphological perspectives. Adsorption and degradation tests demonstrated the material's ability to efficiently degrade Lome until its complete disappearance from the electrospray ionization (ESI) mass spectra. Regeneration tests showed the possibility of reusing the material for up to three cycles. Ecotoxicological tests using algae Rapidocelis subcapitata, crustaceans Daphnia magna, and bacteria Vibrio fischeri were performed to evaluate the ecosafety of our synthesized materials.

4.
J Mater Chem B ; 12(32): 7826-7836, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39041171

RESUMO

The practical and easy detection of dopamine levels in human fluids, such as urine and saliva, is of great interest due to the correlation of dopamine concentration with several diseases. In this work, the one-step synthesis of water-soluble carbon nanoparticles (CNPs), starting from artichoke extract, containing catechol groups, for the fluorescence sensing of dopamine is reported. Size, morphology, chemical composition and electronic structure of CNPs were elucidated by DLS, AFM, XPS, FT-IR, EDX and TEM analyses. Their optical properties were then explored by UV-vis and fluorescence measurements in water. The dopamine recognition properties of these CNPs were investigated in water through fluorescence measurements and we observed the progressive enhancement of the CNP emission intensity upon the progressive addition of dopamine, with a binding affinity value of log K = 5.76 and a detection limit of 0.81 nM. Selectivity towards dopamine was tested over other interfering analytes commonly present in human saliva. Finally, in order to perform a solid point of care test, CNPs were adsorbed on a solid support and exposed to different concentrations of dopamine, thus observing a pseudo-linear response, using a smartphone as a detector. Therefore, the detection of dopamine in simulated human saliva was performed with excellent results, in terms of selectivity and a detection limit of 100 pM.


Assuntos
Carbono , Cynara scolymus , Dopamina , Nanopartículas , Extratos Vegetais , Dopamina/análise , Dopamina/urina , Carbono/química , Nanopartículas/química , Extratos Vegetais/química , Humanos , Cynara scolymus/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Tamanho da Partícula , Saliva/química , Propriedades de Superfície , Espectrometria de Fluorescência
5.
Chempluschem ; 89(8): e202400098, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38647287

RESUMO

The recent international scenario highlights the importance to protect human health and environmental quality from toxic compounds. In this context, organophosphorous (OP) Nerve Agents (NAs) have received particular attention, due to their use in terrorist attacks. Classical instrumental detection techniques are sensitive and selective, but they cannot be used in real field due to the high cost, specialized personnel requested and huge size. For these reasons, the development of practical, easy and fast detection methods (smart methods) is the future of this field. Indeed, starting from initial sensing research, based on optical and/or electrical sensors, today the development and use of smart strategies to detect NAs is the current state of the art. This review summarizes the smart strategies to detect NAs, highlighting some important parameters, such as linearity, limit of detection and selectivity. Furthermore, some critical comments of the future on this field, and in particular, the problems to be solved before a real application of these methods, are provided.


Assuntos
Agentes Neurotóxicos , Agentes Neurotóxicos/análise , Agentes Neurotóxicos/química , Humanos , Compostos Organofosforados/análise , Compostos Organofosforados/química
6.
Chemistry ; 30(33): e202401201, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38600692

RESUMO

During a stress condition, the human body synthesizes catecholamine neurotransmitters and specific hormones (called "stress hormones"), the most important of which is cortisol. The monitoring of cortisol levels should be extremely important to control the stress levels, and for this reason, it shows important medical applications. The common analytical methods (HPLC, GC-MS) cannot be used in real life, due to the bulky size of the instruments and the necessity of specialized personnel. Molecular probes solve these problems due to their fast and easy use. The synthesis of new fluorescent rhodamine probes, able to interact by non-covalent interactions with cortisol, the recognition properties in solution as well as in solid state by Strip Test, using a smartphone as detector, are here reported. DFT calculations and FT-IR measurements suggest the formation of supramolecular complexes through hydrogen bonds as main non-covalent interaction. The present study represents one of the first sensor, based on synthetical chemical receptors, able to detect cortisol in a linear range from 1 mM to 1 pM, based on non-covalent molecular recognition and paves the way to the realization of practical point-of-care device for the monitoring of cortisol in real live.


Assuntos
Corantes Fluorescentes , Hidrocortisona , Rodaminas , Smartphone , Hidrocortisona/química , Hidrocortisona/análise , Hidrocortisona/metabolismo , Corantes Fluorescentes/química , Rodaminas/química , Humanos , Ligação de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Técnicas Biossensoriais/métodos
7.
Analyst ; 149(4): 989-1001, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38226461

RESUMO

During a stress condition, the human body synthesizes catecholamine neurotransmitters and specific hormones (called "stress hormones"), the most important of which is cortisol. The monitoring of cortisol levels is extremely important for controlling the stress levels. For this reason, it has important medical applications. Common analytical methods (HPLC, GC-MS) cannot be used in real life due to the bulkiness of the instruments and the necessity of specialized operators. Molecular probes solve this problem. This review aims to provide a description of recent developments in this field, focusing on the analytical aspects and the possibility to obtain real practical devices from these molecular probes.


Assuntos
Catecolaminas , Hidrocortisona , Humanos , Sondas Moleculares , Neurotransmissores , Cromatografia Gasosa-Espectrometria de Massas
8.
ACS Omega ; 8(41): 38038-38044, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867699

RESUMO

The widespread use of smartphones and related tools is extending their applications in several fields. Herein, we report a reusable smartphone coupled portable detection system for the sensing of sub-ppm level of a nerve agent mimic (dimethylmethylphosphonate) in the gas phase. The detection system is based on multiple hydrogen-bond interactions of the vapor analyte with an ad-hoc functionalized Bodipy chromophore scaffold. The multitopic approach used for the molecular recognition of DMMP leads to the highest binding constant values, high selectivity, and low limits of detection.

9.
Polymers (Basel) ; 15(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36987214

RESUMO

The goal of this work was to investigate the morphological and chemical-physical changes induced by adding ZnO nanoparticles to bio-based polymeric materials based on polylactic acid (PLA) and polyamide 11 (PA11). Precisely, the photo- and water-degradation phenomena of nanocomposite materials were monitored. For this purpose, the formulation and characterization of novel bio-nanocomposite blends based on PLA and PA11 at a ratio of 70/30 wt.% filled with zinc oxide (ZnO) nanostructures at different percentages were performed. The effect of ZnO nanoparticles (≤2 wt.%) within the blends was thoroughly explored by employing thermogravimetry (TGA), size exclusion chromatography (SEC), matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and scanning and transmission electron microscopy (SEM and TEM). Adding up to 1% wt. of ZnO resulted in a higher thermal stability of the PA11/PLA blends, with a decrement lower than 8% in terms of molar masses (MMs) values being obtained during blend processing at 200 °C. ZnO promoted trans-ester-amide reactions between the two polymers, leading to the formation of PLA/PA11 copolymers. These species could work as compatibilisers at the polymer interface, improving thermal and mechanical properties. However, the addition of higher quantities of ZnO affected such properties, influencing the photo-oxidative behaviour and thus thwarting the material's application for packaging use. The PLA and blend formulations were subjected to natural aging in seawater for two weeks under natural light exposure. The 0.5% wt. ZnO sample induced polymer degradation with a decrease of 34% in the MMs compared to the neat samples.

10.
Sensors (Basel) ; 21(5)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804375

RESUMO

Gadolinium metal-organic frameworks (Gd-MOFs) and Eu-doped Gd-MOFs have been synthesized through a one-pot green approach using commercially available reagents. The 1,4-benzenedicarboxylic acid (H2-BDC) and 2,6-naphthalenedicarboxylic acid (H2-NDC) were chosen as ditopic organic linkers to build the 3D structure of the network. The Gd-MOFs were characterized using powder X-ray diffraction (XRD), FT-IR spectroscopy, field emission scanning electron microscopy (FE-SEM) and N2 adsorption-desorption analysis. The Gd-MOF structures were attributed comparing the XRD patterns, supported by the FT-IR spectra, with data reported in the literature for Ln-MOFs of similar lanthanide ionic radius. FE-SEM characterization points to the effect of the duration of the synthesis to a more crystalline and organized structure, with grain dimensions increasing upon increasing reaction time. The total surface area of the MOFs has been determined from the application of the Brunauer-Emmett-Teller method. The study allowed us to correlate the processing conditions and ditopic linker dimension to the network surface area. Both Gd-MOF and Eu-doped Gd-MOF have been tested for sensing of the inorganic ions such as Fe3+ and Cr2O72-.

11.
Chem Commun (Camb) ; 56(4): 539-542, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31829317

RESUMO

The first example of supramolecular recognition of phosphocholine by a cavitand receptor has been reported here. The chemical structure of the receptor has been optimized by DFT calculations. The recognition mechanism is based on a "multi-topic approach", which leads to highly efficient (K value up to 107 M-1), selective and sensitive (ppb level) sensing of phosphocholine. The recognition mechanism proposed here is similar to those exploited by Nature, and paves the way for the realization of new sensors with important applications in medicine and security fields.


Assuntos
Complexos de Coordenação/química , Fosforilcolina/análise , Zinco/química , Complexos de Coordenação/síntese química , Teoria da Densidade Funcional , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Estrutura Molecular
12.
Molecules ; 24(11)2019 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-31181723

RESUMO

We report on new Zn-Salen oligomer receptors able to recognize a nerve agent simulant, namely dimethyl methylphosphonate (DMMP), by a supramolecular approach. In particular, three Zn-Salen oligomers (Zn-Oligo-A, -B, and -C), differing by the length distribution, were obtained and characterized by NMR, Gel Permeation Chromatography (GPC), UV-Vis, and fluorescence spectroscopy. Furthermore, we investigated their recognition properties towards DMMP by using fluorescence measurements. We found that the recognition ability depends on the length of the oligomeric chain, and the Zn-Oligo-C shows a binding constant value higher than those already reported in literature for the DMMP detection.


Assuntos
Etilenodiaminas/química , Agentes Neurotóxicos/análise , Compostos Organofosforados/análise , Zinco/química , Adsorção , Fluorescência , Cinética , Ligantes , Compostos Organofosforados/química , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Fluorescência
13.
Chem Commun (Camb) ; 55(36): 5255-5258, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30990489

RESUMO

A new protocol to obtain carbon nanoparticles (CNPs) covalently functionalized with a chiral Mn-Salen catalyst is described here. The new nanocatalyst (CNPs-Mn-Salen) was tested in the enantioselective epoxidation of some representative alkenes (CN-chromene, 1,2-dihydronaphthalene and cis-ß-ethyl styrene), obtaining better enantiomeric excess values than that of the catalyst single molecule, highlighting the role of the nanostructure in the enantioselectivity.

14.
Bioorg Med Chem Lett ; 28(20): 3290-3301, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30227945

RESUMO

Host-guest interactions studied in supramolecular chemistry have been inspired by interactions between enzymes and substrates. Furthermore, most of the interactions involved in the cells are based on non-covalent bonds between two or more molecules. The common aspects between supramolecular chemistry and medicine have led to the development of a "new" area called "supramolecular medicine", in which non-covalent interactions and self-assembly processes are applied within several medical fields. The object of this Digest is to offer an account of how some macrocyclic hosts (e.g. cucurbiturils, cyclodextrins, pillararenes and calixarenes) are employed in supramolecular medicine creating new supramolecular hydrogels used as biomaterials for human tissue in regenerative medicine, and a diagnostic instrument, in-vitro and in-vivo, for the detection of diseases, as well as for the investigation of cell morphology.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Compostos Macrocíclicos/química , Nanomedicina/métodos , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/toxicidade , Linhagem Celular Tumoral , Diagnóstico por Imagem/métodos , Fluorescência , Humanos , Hidrogéis/síntese química , Hidrogéis/toxicidade , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/toxicidade , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Medicina Regenerativa/métodos
15.
Langmuir ; 34(39): 11706-11713, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30199641

RESUMO

We have developed a novel approach enabling us to follow and facilitate the formation of two-dimensional coordination polymer monolayers directly at the air/water interface without the need of complex instrumentation. The method is based on the use of a surface active ligand that, when spread at the air/water interface, progressively undergoes hydrolysis with consequent gradual decrease in surface pressure. Notably, if the aqueous subphase contains metal ions capable of coordinating the ligand, coordination competes with hydrolysis, resulting in a lower surface pressure decrease. As a consequence, the formation of the coordination polymer monolayer can be verified simply by surface pressure measurements. Competition between hydrolysis and coordination was investigated as a function of the main experimental parameters affecting the two reactions, enabling the formation of stable coordination polymer monolayers with controlled density. Finally, the formation of continuous rigid 2D layers was confirmed by compression isotherms and ex situ morphological characterization. This work will simplify the verification of coordination polymer monolayer formation; thus, it will boost the synthesis of novel and innovative 2D materials.

16.
Chem Commun (Camb) ; 54(79): 11156-11159, 2018 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-30226513

RESUMO

Sensing of chemical warfare agents is today an important target, mainly due to the international scenario. Here a new approach, based on supramolecular multi-topic recognition of dimethyl methylphosphonate, a simulant of chemical warfare agents, is reported. These receptors, based on metal-salen complexes, combine their abilities to establish Lewis acid-base interactions and hydrogen bonds and pave the way for the realization of a new class of supramolecular sensors for the non-covalent recognition of chemical warfare agent simulants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA