Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 46(4): 896-899, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33577542

RESUMO

In this Letter, we investigate the energy-scaling rules of hollow-core fiber (HCF)-based nonlinear pulse propagation and compression merged with high-energy Yb-laser technology, in a regime where the effects such as plasma disturbance, optical damages, and setup size become important limiting parameters. As a demonstration, 70 mJ 230 fs pulses from a high-energy Yb laser amplifier were compressed down to 40 mJ 25 fs by using a 2.8-m-long stretched HCF with a core diameter of 1 mm, resulting in a record peak power of 1.3 TW. This work presents a critical advance of a high-energy pulse (hundreds of mJ level) nonlinear interactions platform based on high energy sub-ps Yb technology with considerable applications, including driving intense THz, X-ray pulses, Wakefield acceleration, parametric wave mixing and ultraviolet generation, and tunable long-wavelength generation via enhanced Raman scattering.

2.
Opt Lett ; 44(9): 2173-2176, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042176

RESUMO

Formation of light bullets-tightly localized in space and time light packets, retaining their spatiotemporal shape during propagation-is, for the first time, experimentally observed and investigated in a new regime of mid-infrared filamentation in ambient air. It is suggested that the light bullets generated in ambient air by multi-mJ, positively chirped 3.9-µm pulses originate from a dynamic interplay between the anomalous dispersion in the vicinity of CO2 resonance and positive chirp, both intrinsic, carried by the driver pulse, and accumulated, originating from nonlinear propagation in air. By adjusting the initial chirp of the driving pulses, one can control the spatial beam profile, energy losses, and spectral-temporal dynamics of filamenting pulses and deliver sub-3-cycle mid-IR pulses in high-quality beam on a remote target.

3.
Opt Lett ; 43(9): 2185-2188, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714785

RESUMO

Properties of filaments ignited by multi-millijoule, 90 fs mid-infrared pulses centered at 3.9 µm are examined experimentally by monitoring plasma density, losses, spectral dynamics and beam profile evolution at different focusing strengths. By changing from strong (f=0.25 m) to loose (f=7 m) focusing, we observe a shift from plasma-assisted filamentation to filaments with low plasma density. In the latter case, filamentation manifests itself by beam self-symmetrization and spatial self-channeling. Spectral dynamics in the case of loose focusing is dominated by the nonlinear Raman frequency downshift, which leads to the overlap with the CO2 resonance in the vicinity of 4.2 µm. The dynamic CO2 absorption in the case of 3.9 µm filaments with their low plasma content is the main mechanism of energy losses and, either alone or together with other nonlinear processes, contributes to the arrest of intensity.

4.
Opt Lett ; 43(5): 1131-1134, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29489797

RESUMO

We report on, to the best of our knowledge, the first results of laser plasma wakefield acceleration driven by ultrashort mid-infrared (IR) laser pulses (λ=3.9 µm, 100 fs, 0.25 TW), which enable near- and above-critical density interactions with moderate-density gas jets. Relativistic electron acceleration up to ∼12 MeV occurs when the jet width exceeds the threshold scale length for relativistic self-focusing. We present scaling trends in the accelerated beam profiles, charge, and spectra, which are supported by particle-in-cell simulations and time-resolved images of the interaction. For similarly scaled conditions, we observe significant increases in the accelerated charge, compared to previous experiments with near-infrared (λ=800 nm) pulses.

5.
Sci Rep ; 7(1): 2103, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28522858

RESUMO

We present experimental studies of long-distance transmission of ultrashort mid-infrared laser pulses through atmospheric air, probing air dispersion in the 3.6-4.2-µm wavelength range. Atmospheric air is still highly transparent to electromagnetic radiation in this spectral region, making it interesting for long-distance signal transmission. However, unlike most of the high-transmission regions in gas media, the group-velocity dispersion, as we show in this work, is anomalous at these wavelengths due to the nearby asymmetric-stretch rovibrational band of atmospheric carbon dioxide. The spectrograms of ultrashort mid-infrared laser pulses transmitted over a distance of 60 m in our experiments provide a map of air dispersion in this wavelength range, revealing clear signatures of anomalous dispersion, with anomalous group delays as long as 1.8 ps detected across the bandwidth covered by 80-fs laser pulses.

6.
Opt Express ; 24(25): 28915-28922, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27958556

RESUMO

We report on a diode-pumped cryogenically cooled bulk Yb:CaF2 12-pass amplifier delivering 110-mJ, 1030-nm pulses at a 50-Hz repetition rate. The pulses have a spectral bandwidth of 13 nm and are compressed to 225 fs pulse duration in a double reflection grating based compressor having a transmission efficiency of >90%. The measured output beam quality is M2<1.1. A key feature of the amplifier design is the 4f relay imaging onto the gain medium with progressive beam magnification for the mitigation of the spatial gain narrowing effect. The number of passes in the amplifier is scalable by increasing the size of imaging mirrors. In order to prevent accumulation of nonlinear phase due to self-phase modulation in air, the amplifier is enclosed into a low-vacuum case.

7.
Opt Express ; 24(21): 23872-23882, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27828222

RESUMO

A new route to efficient generation of THz pulses with high-energy was demonstrated using semiconductor materials pumped at an infrared wavelength sufficiently long to suppress both two- and three-photon absorption and associated free-carrier absorption at THz frequencies. For pumping beyond the three-photon absorption edge, the THz generation efficiency for optical rectification of femtosecond laser pulses with tilted intensity front in ZnTe was shown to increase 3.5 times, as compared to pumping below the absorption edge. The four-photon absorption coefficient of ZnTe was estimated to be ß4=(4±1)×10-5 cm5/GW3. THz pulses with 14 µJ energy were generated with as high as 0.7% efficiency in ZnTe pumped at 1.7 µm. It is shown that scaling the THz pulse energy to the mJ level by increasing the pump spot size and pump pulse energy is feasible.

8.
Nat Commun ; 7: 12877, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27620117

RESUMO

The physics of strong-field applications requires driver laser pulses that are both energetic and extremely short. Whereas optical amplifiers, laser and parametric, boost the energy, their gain bandwidth restricts the attainable pulse duration, requiring additional nonlinear spectral broadening to enable few or even single cycle compression and a corresponding peak power increase. Here we demonstrate, in the mid-infrared wavelength range that is important for scaling the ponderomotive energy in strong-field interactions, a simple energy-efficient and scalable soliton-like pulse compression in a mm-long yttrium aluminium garnet crystal with no additional dispersion management. Sub-three-cycle pulses with >0.44 TW peak power are compressed and extracted before the onset of modulation instability and multiple filamentation as a result of a favourable interplay between strong anomalous dispersion and optical nonlinearity around the wavelength of 3.9 µm. As a manifestation of the increased peak power, we show the evidence of mid-infrared pulse filamentation in atmospheric air.

9.
Opt Lett ; 41(15): 3479-82, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27472598

RESUMO

Angle-resolved spectral analysis of a multioctave high-energy supercontinuum output of mid-infrared laser filaments is shown to provide a powerful tool for understanding intricate physical scenarios behind laser-induced filamentation in the mid-infrared. The ellipticity of the mid-infrared driver beam breaks the axial symmetry of filamentation dynamics, offering a probe for a truly (3+1)-dimensional spatiotemporal evolution of mid-IR pulses in the filamentation regime. With optical harmonics up to the 15th order contributing to supercontinuum generation in such filaments alongside Kerr-type and ionization-induced nonlinearities, the output supercontinuum spectra span over five octaves from the mid-ultraviolet deep into the mid-infrared. Full (3+1)-dimensional field evolution analysis is needed for an adequate understanding of this regime of laser filamentation. Supercomputer simulations implementing such analysis articulate the critical importance of angle-resolved measurements for both descriptive and predictive power of filamentation modeling. Strong enhancement of ionization-induced blueshift is shown to offer new approaches in filamentation-assisted pulse compression, enabling the generation of high-power few- and single-cycle pulses in the mid-infrared.

10.
Opt Lett ; 40(11): 2469-72, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26030534

RESUMO

We perform a proof-of-principle demonstration of chemically specific standoff gas sensing, in which a coherent stimulated Raman signal is detected in the direction anticollinear to a two-color laser excitation beam traversing the target volume. The proposed geometry is intrinsically free space as it does not involve back-scattering (reflection) of the signal or excitation beams at or behind the target. A beam carrying an intense mid-IR femtosecond (fs) pulse and a parametrically generated picosecond (ps) UV Stokes pulse is fired in the forward direction. A fs filament, produced by the intense mid-IR pulse, emits a backward-propagating narrowband ps laser pulse at the 337 and 357 nm transitions of excited molecular nitrogen, thus supplying a counter-propagating Raman pump pulse. The scheme is linearly sensitive to species concentration and provides both transverse and longitudinal spatial resolution.

11.
Opt Lett ; 40(9): 2068-71, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25927786

RESUMO

A high-energy supercontinuum spanning 4.7 octaves, from 250 to 6500 nm, is generated using a 0.3-TW, 3.9-µm output of a mid-infrared optical parametric chirped-pulse amplifier as a driver inducing a laser filament in the air. The high-frequency wing of the supercontinuum spectrum is enhanced by odd-order optical harmonics of the mid-infrared driver. Optical harmonics up to the 15th order are observed in supercontinuum spectra as overlapping, yet well-resolved peaks broadened, as verified by numerical modeling, due to spatially nonuniform ionization-induced blue shift.


Assuntos
Raios Infravermelhos , Lasers , Raios Ultravioleta , Fenômenos Ópticos
12.
Sci Rep ; 5: 8368, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25687621

RESUMO

Filamentation of ultrashort laser pulses in the atmosphere offers unique opportunities for long-range transmission of high-power laser radiation and standoff detection. With the critical power of self-focusing scaling as the laser wavelength squared, the quest for longer-wavelength drivers, which would radically increase the peak power and, hence, the laser energy in a single filament, has been ongoing over two decades, during which time the available laser sources limited filamentation experiments in the atmosphere to the near-infrared and visible ranges. Here, we demonstrate filamentation of ultrashort mid-infrared pulses in the atmosphere for the first time. We show that, with the spectrum of a femtosecond laser driver centered at 3.9 µm, right at the edge of the atmospheric transmission window, radiation energies above 20 mJ and peak powers in excess of 200 GW can be transmitted through the atmosphere in a single filament. Our studies reveal unique properties of mid-infrared filaments, where the generation of powerful mid-infrared supercontinuum is accompanied by unusual scenarios of optical harmonic generation, giving rise to remarkably broad radiation spectra, stretching from the visible to the mid-infrared.

13.
Opt Lett ; 39(16): 4659-62, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25121842

RESUMO

Laser filamentation is understood to be self-channeling of intense ultrashort laser pulses achieved when the self-focusing because of the Kerr nonlinearity is balanced by ionization-induced defocusing. Here, we show that, right behind the ionized region of a laser filament, ultrashort laser pulses can couple into a much longer light channel, where a stable self-guiding spatial mode is sustained by the saturable self-focusing nonlinearity. In the limiting regime of negligibly low ionization, this post-filamentation beam dynamics converges to a large-scale beam self-trapping scenario known since the pioneering work on saturable self-focusing nonlinearities.

14.
Opt Lett ; 38(16): 3194-7, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24104685

RESUMO

We observed the filamentation of mid-infrared ultrashort laser pulses (3.9 µm, 80 fs) in molecular gases. It efficiently generates a broadband supercontinuum over two octaves in the 2.5-6 µm spectral range, with a red-shift up to 500 nm due to the Raman effect, which dominates over the blue shift induced by self-steepening and the gas ionization. As a result, the conversion efficiency into the Stokes region (4.3-6 µm) 65% is demonstrated.

15.
Opt Lett ; 38(15): 2746-9, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23903130

RESUMO

We have developed the first (to our knowledge) femtosecond Tm-fiber-laser-pumped Ho:YAG room-temperature chirped pulse amplifier system delivering scalable multimillijoule, multikilohertz pulses with a bandwidth exceeding 12 nm and average power of 15 W. The recompressed 530 fs pulses are suitable for broadband white light generation in transparent solids, which makes the developed source ideal for both pumping and seeding optical parametric amplifiers operating in the mid-IR spectral range.

16.
Opt Express ; 20(22): 25121-9, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23187278

RESUMO

We propose and investigate experimentally an interferometrically stable, polarization-selective pulse multiplexing scheme for direct laser amplification of picosecond pulses. The basic building block of this scheme is a Sagnac loop which allows for a straightforward scaling of the pulse-multiplexing scheme. Switching the amplifier from single-pulse amplification to burst mode increases extraction efficiency, reduces parasitic non-linearities in the gain medium and allows for higher output energies. Time-frequency analysis of the amplified output pulses demonstrates the viability of this approach.

17.
Opt Express ; 20(17): 18784-94, 2012 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23038518

RESUMO

By combining tunable broadband pulse generation with the technique of nonlinear spectral compression we demonstrate a prototype scheme for highly selective detection of air molecules by backward stimulated Raman scattering. The experimental results allow to extrapolate the laser parameters required for standoff sensing based on the recently demonstrated backward atmospheric lasing.


Assuntos
Algoritmos , Atmosfera/análise , Atmosfera/química , Gases/análise , Lasers , Modelos Teóricos , Análise Espectral Raman/instrumentação , Análise Espectral Raman/métodos , Simulação por Computador , Espalhamento de Radiação
18.
Opt Lett ; 37(13): 2547-9, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22743450

RESUMO

We demonstrate shaping of high-energy broadband Yb amplifier pulses for the generation of a (sub)picosecond top-hat temporal pulse profile that significantly improves pumping efficiency of an optical parametric amplifier (OPA). Phase-only modulation is applied by an acousto-optic programmable dispersion filter. This simple scheme is scalable to a high average power due to a relatively broad bandwidth of the Yb:CaF(2) gain medium used in the amplifier that supports a sub-150-fs transform-limited pulse duration. Additionally we show that OPA seeding with supercontinuum remains possible because top-hat-shaped pulses passed through a glass block recompress to ≈200 fs with minimum satellite production.


Assuntos
Lasers de Estado Sólido , Fenômenos Ópticos , Itérbio , Análise Espectral
19.
Opt Lett ; 37(12): 2268-70, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22739877

RESUMO

Third- and fifth-harmonic generation by ultrashort laser pulses in the mid-infrared (mid-IR) reveals nonlinear-optical effects beyond the fifth-order nonlinearity and enables, because of an extraordinarily long coherence length, efficient multiplex frequency upconversion of ultrashort mid-IR pulses. We show that harmonic generation by mid-IR pulses provides an access to the key optical constants of gas media, allowing metrology of linear and nonlinear-optical susceptibilities in the mid-IR and offering a tool for the remote sensing of the atmosphere.

20.
Opt Lett ; 36(10): 1914-6, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21593933

RESUMO

Here, 200 fs 6 mJ pulses from a cw diode-pumped Yb,Na:CaF(2) amplifier are spectrally broadened in an Ar- or Ne-filled hollow-core fiber and recompressed to 20 fs (Ar) and 35 fs (Ne) using a prism pair. The results of spectral broadening and phase measurement are in excellent agreement with numerical modeling based on the generalized nonlinear Schrödinger equation. The longer laser wavelength of 1030 nm permits favorable energy scaling for the hollow-fiber technique compared to ultrafast amplifiers operating at 800 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA