RESUMO
Species delimitation in minute freshwater snails is often difficult to perform using solely shell morphology. The problem intensifies when invasive species spread within the distribution range of morphologically similar native species. In Chile, the Truncatelloidean snails are represented by the native genera Heleobia and Potamolithus plus the invasive mudsnail Potamopyrgus antipodarum, which can easily be confused. Using an integrative approach, we performed molecular phylogenetic analysis and studied reproductive and morphological features to identify superficially similar forms inhabiting the central area of the country. Truncatelloidean snails were identified in 40 of 51 localities sampled, 10 containing Potamopyrgus antipodarum, 23 Heleobia and 7 Potamolithus. Based on these results and previously published data, the known distribution of the mudsnail in Chile encompasses 6 hydrological basins, including 18 freshwater ecosystems. The finding of the mudsnails in several type localities of native species/subspecies of "Heleobia" that were not find in situ suggests species replacement or significant extinction of native fauna, a hypothesis supported by the restudy of type material that shows that endemic forms belong to the genus Potamolithus. This study shows the usefulness of integrative taxonomy not only resolving complex taxa with cryptic morphology but also measuring the extent of an ongoing invasion.
Assuntos
Monitorização de Parâmetros Ecológicos/métodos , Espécies Introduzidas , Reprodução/genética , Caramujos/classificação , Animais , Chile , Complexo IV da Cadeia de Transporte de Elétrons/genética , Estudos de Viabilidade , Feminino , Água Doce , Masculino , Filogenia , Análise de Sequência de DNA , Caramujos/anatomia & histologia , Caramujos/genéticaRESUMO
With more than 5,000 species, Conoidea is one of the most diversified superfamilies of Gastropoda. Recently, the family-level classification of these venomous predator snails has undergone substantial changes, on the basis of a phylogenetic tree reconstructed combining partial mitochondrial and nuclear gene sequences, and up to 16 families are now recognized. However, phylogenetic relationships among these families remain largely unresolved. Here, we sequenced 20 complete or nearly complete mitochondrial (mt) genomes, which were combined with mt genomes available in GenBank to construct a dataset that included representatives of 80% of the known families, although for some we had only one species or genus as representative. Most of the sequenced conoidean mt genomes shared a constant genome organization, and observed rearrangements were limited exclusively to tRNA genes in a few lineages. Phylogenetic trees were reconstructed using probabilistic methods. Two main monophyletic groups, termed "Clade A" and "Clade B", were recovered with strong support within a monophyletic Conoidea. Clade A (including families Clavatulidae, Horaiclavidae, Turridae s.s., Terebridae, Drilliidae, Pseudomelatomidae, and Cochlespiridae) was composed of four main lineages, one of which was additionally supported by a rearrangement in the gene order. Clade B (including families Conidae, Borsoniidae, Clathurellidae, Mangeliidae, Raphitomidae, and Mitromorphidae) was composed of five main lineages. The reconstructed phylogeny rejected the monophyly of Clavatulidae, Horaiclavidae, Turridae, Pseudomelatomidae, and Conidae, indicating that several of the currently accepted families may be ill-defined. The reconstructed tree also revealed new phylogenetic positions for genera characterized as tentative (Gemmuloborsonia, Lucerapex, and Leucosyrinx), enigmatic (Marshallena) or challenging to place (Fusiturris), which will potentially impact the classification of the Conoidea.