Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 130(13): 1535-1542, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28801449

RESUMO

Previous Fanconi anemia (FA) gene therapy studies have failed to demonstrate engraftment of gene-corrected hematopoietic stem and progenitor cells (HSPCs) from FA patients, either after autologous transplantation or infusion into immunodeficient mice. In this study, we demonstrate that a validated short transduction protocol of G-CSF plus plerixafor-mobilized CD34+ cells from FA-A patients with a therapeutic FANCA-lentiviral vector corrects the phenotype of in vitro cultured hematopoietic progenitor cells. Transplantation of transduced FA CD34+ cells into immunodeficient mice resulted in reproducible engraftment of myeloid, lymphoid, and CD34+ cells. Importantly, a marked increase in the proportion of phenotypically corrected, patient-derived hematopoietic cells was observed after transplantation with respect to the infused CD34+ graft, indicating the proliferative advantage of corrected FA-A hematopoietic repopulating cells. Our data demonstrate for the first time that optimized protocols of hematopoietic stem cell collection from FA patients, followed by the short and clinically validated transduction of these cells with a therapeutic lentiviral vector, results in the generation of phenotypically corrected HSPCs capable of repopulating and developing proliferation advantage in immunodeficient mice. Our results suggest that clinical approaches for FA gene therapy similar to those used in this study will facilitate hematopoietic repopulation in FA patients with gene corrected HSPCs, opening new prospects for gene therapy of FA patients.


Assuntos
Proteína do Grupo de Complementação C da Anemia de Fanconi/genética , Anemia de Fanconi/terapia , Terapia Genética/métodos , Vetores Genéticos , Transplante de Células-Tronco Hematopoéticas/métodos , Transdução Genética/métodos , Animais , Antígenos CD34/imunologia , Criança , Pré-Escolar , Anemia de Fanconi/patologia , Sobrevivência de Enxerto , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/patologia , Xenoenxertos , Humanos , Lentivirus/genética , Camundongos
2.
PLoS One ; 5(12): e15525, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21203397

RESUMO

Chronic myeloid leukemia (CML) is a malignant clonal disorder of the hematopoietic system caused by the expression of the BCR/ABL fusion oncogene. Although it is well known that CML cells are genetically unstable, the mechanisms accounting for this genomic instability are still poorly understood. Because the Fanconi anemia (FA) pathway is believed to control several mechanisms of DNA repair, we investigated whether this pathway was disrupted in CML cells. Our data show that CML cells have a defective capacity to generate FANCD2 nuclear foci, either in dividing cells or after DNA damage. Similarly, human cord blood CD34(+) cells transduced with BCR/ABL retroviral vectors showed impaired FANCD2 foci formation, whereas FANCD2 monoubiquitination in these cells was unaffected. Soon after the transduction of CD34(+) cells with BCR/ABL retroviral vectors a high proportion of cells with supernumerary centrosomes was observed. Similarly, BCR/ABL induced a high proportion of chromosomal abnormalities, while mediated a cell survival advantage after exposure to DNA cross-linking agents. Significantly, both the impaired formation of FANCD2 nuclear foci, and also the predisposition of BCR/ABL cells to develop centrosomal and chromosomal aberrations were reverted by the ectopic expression of BRCA1. Taken together, our data show for the first time a disruption of the FA/BRCA pathway in BCR/ABL cells, suggesting that this defective pathway should play an important role in the genomic instability of CML by the co-occurrence of centrosomal amplification and DNA repair deficiencies.


Assuntos
Cromossomos/ultraestrutura , Anemia de Fanconi/metabolismo , Proteínas de Fusão bcr-abl/metabolismo , Genes BRCA1 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Antígenos CD34/biossíntese , Linhagem Celular Tumoral , Centrossomo/ultraestrutura , Aberrações Cromossômicas , Reagentes de Ligações Cruzadas/farmacologia , Dano ao DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Humanos , Microscopia de Fluorescência/métodos , Retroviridae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...