Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
bioRxiv ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38106043

RESUMO

TIR-domain proteins with enzymatic activity are essential for immunity in plants, animals, and bacteria. However, it is not known how these proteins function in pathogen sensing in animals. We discovered that a TIR-domain protein (TIR-1/SARM1) is strategically expressed on the membranes of a lysosomal sub-compartment, which enables intestinal epithelial cells in the nematode C. elegans to survey for pathogen effector-triggered host damage. We showed that a redox active virulence effector secreted by the bacterial pathogen Pseudomonas aeruginosa alkalinized and condensed a specific subset of lysosomes by inducing intracellular oxidative stress. Concentration of TIR-1/SARM1 on the surface of these organelles triggered its multimerization, which engages its intrinsic NADase activity, to activate the p38 innate immune pathway and protect the host against microbial intoxication. Thus, lysosomal TIR-1/SARM1 is a sensor for oxidative stress induced by pathogenic bacteria to activate metazoan intestinal immunity.

2.
PLoS Pathog ; 19(10): e1011730, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37906605

RESUMO

Sphingolipids are required for diverse biological functions and are degraded by specific catabolic enzymes. However, the mechanisms that regulate sphingolipid catabolism are not known. Here we characterize a transcriptional axis that regulates sphingolipid breakdown to control resistance against bacterial infection. From an RNAi screen for transcriptional regulators of pathogen resistance in the nematode C. elegans, we identified the nuclear hormone receptor nhr-66, a ligand-gated transcription factor homologous to human hepatocyte nuclear factor 4. Tandem chromatin immunoprecipitation-sequencing and RNA sequencing experiments revealed that NHR-66 is a transcriptional repressor, which directly targets sphingolipid catabolism genes. Transcriptional de-repression of two sphingolipid catabolic enzymes in nhr-66 loss-of-function mutants drives the breakdown of sphingolipids, which enhances host susceptibility to infection with the bacterial pathogen Pseudomonas aeruginosa. These data define transcriptional control of sphingolipid catabolism in the regulation of cellular sphingolipids, a process that is necessary for pathogen resistance.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Esfingolipídeos/genética , Esfingolipídeos/metabolismo
3.
STAR Protoc ; 4(3): 102477, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37527042

RESUMO

The Caenorhabditis elegans genome encodes a greatly expanded number of nuclear hormone receptors, many of which remain orphaned. Here, we present a protocol to assess ligand-receptor binding in C. elegans using an adapted cellular thermal shift assay and isothermal dose response. We describe steps for growing C. elegans and preparing lysates and compounds. We also detail how to perform and quantify these assays. This protocol can be used to study any soluble receptor. For complete details on the use and execution of this protocol, please refer to Peterson et al. (2023).1.


Assuntos
Bioensaio , Caenorhabditis elegans , Animais , Ligantes
4.
Elife ; 122023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606250

RESUMO

Biguanides, including the world's most prescribed drug for type 2 diabetes, metformin, not only lower blood sugar, but also promote longevity in preclinical models. Epidemiologic studies in humans parallel these findings, indicating favorable effects of metformin on longevity and on reducing the incidence and morbidity associated with aging-related diseases. Despite this promise, the full spectrum of molecular effectors responsible for these health benefits remains elusive. Through unbiased screening in Caenorhabditis elegans, we uncovered a role for genes necessary for ether lipid biosynthesis in the favorable effects of biguanides. We demonstrate that biguanides prompt lifespan extension by stimulating ether lipid biogenesis. Loss of the ether lipid biosynthetic machinery also mitigates lifespan extension attributable to dietary restriction, target of rapamycin (TOR) inhibition, and mitochondrial electron transport chain inhibition. A possible mechanistic explanation for this finding is that ether lipids are required for activation of longevity-promoting, metabolic stress defenses downstream of the conserved transcription factor skn-1/Nrf. In alignment with these findings, overexpression of a single, key, ether lipid biosynthetic enzyme, fard-1/FAR1, is sufficient to promote lifespan extension. These findings illuminate the ether lipid biosynthetic machinery as a novel therapeutic target to promote healthy aging.


Metformin is the drug most prescribed to treat type 2 diabetes around the world and has been in clinical use since 1950. The drug belongs to a family of compounds known as biguanides which reduce blood sugar, making them an effective treatment against type 2 diabetes. More recently, biguanides have been found to have other health benefits, including limiting the growth of various cancer cells and improving the lifespan and long-term health of several model organisms. Epidemiologic studies also suggest that metformin may increase the lifespan of humans and reduce the incidence of age-related illnesses such as cardiovascular disease, cancer and dementia. Given the safety and effectiveness of metformin, understanding how it exerts these desirable effects may allow scientists to discover new mechanisms to promote healthy aging. The roundworm Caenorhabditis elegans is an ideal organism for studying the lifespan-extending effects of metformin. It has an average lifespan of two weeks, a genome that is relatively easy to manipulate, and a transparent body that enables scientists to observe cellular and molecular events in living worms. To discover the genes that enable metformin's lifespan-extending properties, Cedillo, Ahsan et al. systematically switched off the expression of about 1,000 genes involved in C. elegans metabolism. They then screened for genes which impaired the action of biguanides when inactivated. This ultimately led to the identification of a set of genes involved in promoting a longer lifespan. Cedillo, Ahsan et al. then evaluated how these genes impacted other well-described pathways involved in longevity and stress responses. The analysis indicated that a biguanide drug called phenformin (which is similar to metformin) increases the synthesis of ether lipids, a class of fats that are critical components of cellular membranes. Indeed, genetically mutating the three major enzymes required for ether lipid production stopped the biguanide from extending the worms' lifespans. Critically, inactivating these genes also prevented lifespan extension through other known strategies, such as dietary restriction and inhibiting the cellular organelle responsible for producing energy. Cedillo, Ahsan et al. also showed that increasing ether lipid production alters the activity of a well-known longevity and stress response factor called SKN-1, and this change alone is enough to extend the lifespan of worms. These findings suggest that promoting the production of ether lipids could lead to healthier aging. However, further studies, including clinical trials, will be required to determine whether this is a viable approach to promote longevity and health in humans.


Assuntos
Antimaláricos , Diabetes Mellitus Tipo 2 , Metformina , Humanos , Animais , Caenorhabditis elegans/genética , Longevidade , Etil-Éteres , Éteres , Lipídeos
5.
Immunity ; 56(4): 768-782.e9, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36804958

RESUMO

Distinguishing infectious pathogens from harmless microorganisms is essential for animal health. The mechanisms used to identify infectious microbes are not fully understood, particularly in metazoan hosts that eat bacteria as their food source. Here, we characterized a non-canonical pattern-recognition system in Caenorhabditis elegans (C. elegans) that assesses the relative threat of virulent Pseudomonas aeruginosa (P. aeruginosa) to activate innate immunity. We discovered that the innate immune response in C. elegans was triggered by phenazine-1-carboxamide (PCN), a toxic metabolite produced by pathogenic strains of P. aeruginosa. We identified the nuclear hormone receptor NHR-86/HNF4 as the PCN sensor in C. elegans and validated that PCN bound to the ligand-binding domain of NHR-86/HNF4. Activation of NHR-86/HNF4 by PCN directly engaged a transcriptional program in intestinal epithelial cells that protected against P. aeruginosa. Thus, a bacterial metabolite is a pattern of pathogenesis surveilled by nematodes to identify a pathogen in its bacterial diet.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , Receptores Citoplasmáticos e Nucleares/metabolismo , Imunidade Inata , Bactérias , Pseudomonas aeruginosa/metabolismo
6.
Elife ; 112022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35098926

RESUMO

Intracellular signaling regulators can be concentrated into membrane-free, higher ordered protein assemblies to initiate protective responses during stress - a process known as phase transition. Here, we show that a phase transition of the Caenorhabditis elegans Toll/interleukin-1 receptor domain protein (TIR-1), an NAD+ glycohydrolase homologous to mammalian sterile alpha and TIR motif-containing 1 (SARM1), underlies p38 PMK-1 immune pathway activation in C. elegans intestinal epithelial cells. Through visualization of fluorescently labeled TIR-1/SARM1 protein, we demonstrate that physiologic stresses, both pathogen and non-pathogen, induce multimerization of TIR-1/SARM1 into visible puncta within intestinal epithelial cells. In vitro enzyme kinetic analyses revealed that, like mammalian SARM1, the NAD+ glycohydrolase activity of C. elegans TIR-1 is dramatically potentiated by protein oligomerization and a phase transition. Accordingly, C. elegans with genetic mutations that specifically block either multimerization or the NAD+ glycohydrolase activity of TIR-1/SARM1 fail to induce p38 PMK phosphorylation, are unable to increase immune effector expression, and are dramatically susceptible to bacterial infection. Finally, we demonstrate that a loss-of-function mutation in nhr-8, which alters cholesterol metabolism and is used to study conditions of sterol deficiency, causes TIR-1/SARM1 to oligomerize into puncta in intestinal epithelial cells. Cholesterol scarcity increases p38 PMK-1 phosphorylation, primes immune effector induction in a manner that requires TIR-1/SARM1 oligomerization and its intrinsic NAD+ glycohydrolase activity, and reduces pathogen accumulation in the intestine during a subsequent infection. These data reveal a new adaptive response that allows a metazoan host to anticipate pathogen threats during cholesterol deprivation, a time of relative susceptibility to infection. Thus, a phase transition of TIR-1/SARM1 as a prerequisite for its NAD+ glycohydrolase activity is strongly conserved across millions of years of evolution and is essential for diverse physiological processes in multiple cell types.


From worms to humans, animals have developed various strategies ­ including immune defences ­ to shield themselves from disease-causing microbes. A type of roundworm, called C. elegans, lives in environments rich in microbes, so it needs effective immune defences to protect itself. The roundworms share a key regulatory pathway with mammals that helps to control their immune responses. This so-called p38 pathway relies on proteins that interact with each other to activate protective immune defences. Proteins contain different regions or domains that can give them a certain function. For example, proteins with a region called TIR play important roles in immune defences in both animals and plants. One such protein, called SARM1, is unique among animal and plant proteins in that it is an enzyme, which cleaves an important metabolite in the cell. In C. elegans, the SARM1 homolog, TIR-1, controls the p38 pathway during infection, but how TIR-1 activates it is unclear. To find out more, Peterson, Icso et al. modified C. elegans to generate a fluorescent form of TIR-1 and infected the worms with bacteria. Imaging techniques revealed that infection caused TIR-1 in gut cells to cluster into organized structures, which increases the enzymatic activity of the protein to activate the p38 immune pathway. Moreover, stress situations, such as cholesterol nutrient withdrawal, activated the p38 pathway in the same way. This adaptive stress response allows the animal to defend itself against pathogen threats during times, when they are most susceptible to infections. Cells in the gut provide a primary line of defence against infectious bacteria and are important for maintaining a healthy gut immune system. When the mechanisms for pathogen sensing and immune maintenance are disrupted, it can lead to inflammation and higher risk of infection. Peterson, Icso et al. show how a key regulator of gut immunity, TIR-1, provides protection in C. elegans, which may suggest that SARM1 could have a similar role in mammals.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colesterol/metabolismo , Mamíferos/metabolismo , NAD/metabolismo , NAD+ Nucleosidase/metabolismo
7.
Open Forum Infect Dis ; 8(3): ofab041, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33728358

RESUMO

Long-term antibiotics are not effective for the therapy of patients with persistent symptoms and a history of Lyme disease. However, some clinicians still prescribe these therapies. We present a case of peripherally inserted central catheter-associated Nocardia nova endocarditis in a patient who had been receiving intravenous antibiotics for the management of chronic Lyme disease. This case highlights an important risk associated with the unscientific use of indwelling peripheral catheters and intravenous antibiotics for the management of such patients.

9.
Methods Mol Biol ; 2144: 145-160, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410032

RESUMO

The microscopic nematode Caenorhabditis elegans has emerged as a powerful system to characterize evolutionarily ancient mechanisms of pathogen sensing, innate immune activation, and protective host responses. Experimentally, C. elegans can be infected with a wide variety of human pathogens, as well as with natural pathogens of worms that were isolated from wild-caught nematodes. Here, we focus on an experimental model of bacterial pathogenesis that utilizes the human opportunistic bacterial pathogen Pseudomonas aeruginosa and present an algorithm that can be used to study mechanisms of immune function in nematodes. An initial comparison of the susceptibility of a C. elegans mutant to P. aeruginosa infection with its normal lifespan permits an understanding of a mutant's effect on pathogen susceptibility in the context of potential pleotropic consequences on general worm fitness. Assessing the behavior of nematodes in the presence of P. aeruginosa can also help determine if a gene of interest modulates pathogen susceptibility by affecting the host's ability to avoid a pathogen. In addition, quantification of the pathogen load in the C. elegans intestine during infection, characterization of immune effector transcription that are regulated by host defense pathways and an initial assessment of tissue specificity of immune gene function can refine hypotheses about the mechanism of action of a gene of interest. Together, these protocols offer one approach to characterize novel host defense mechanisms in a simple metazoan host.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Imunidade Inata/genética , Biologia Molecular/métodos , Animais , Evolução Biológica , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/imunologia , Humanos , Fenômenos do Sistema Imunitário/genética , Nematoides/imunologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/patogenicidade
10.
Cell Rep ; 31(1): 107478, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268082

RESUMO

Olfactory neurons allow animals to discriminate nutritious food sources from potential pathogens. From a forward genetic screen, we uncovered a surprising requirement for the olfactory neuron gene olrn-1 in the regulation of intestinal epithelial immunity in Caenorhabditis elegans. During nematode development, olrn-1 is required to program the expression of odorant receptors in the AWC olfactory neuron pair. Here, we show that olrn-1 also functions in AWC neurons in the cell non-autonomous suppression of the canonical p38 MAPK PMK-1 immune pathway in the intestine. Low activity of OLRN-1, which activates the p38 MAPK signaling cassette in AWC neurons during larval development, also de-represses the p38 MAPK PMK-1 pathway in the intestine to promote immune effector transcription, increased clearance of an intestinal pathogen, and resistance to bacterial infection. These data reveal an unexpected connection between olfactory receptor development and innate immunity and show that anti-pathogen defenses in the intestine are developmentally programmed.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Imunidade Inata/imunologia , Proteínas de Membrana/metabolismo , Animais , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Imunidade Inata/genética , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/genética , Proteínas Quinases Ativadas por Mitógeno/imunologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurogênese , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo , Olfato , Fatores de Transcrição/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Proc Natl Acad Sci U S A ; 116(44): 22322-22330, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611372

RESUMO

Early host responses toward pathogens are essential for defense against infection. In Caenorhabditis elegans, the transcription factor, SKN-1, regulates cellular defenses during xenobiotic intoxication and bacterial infection. However, constitutive activation of SKN-1 results in pleiotropic outcomes, including a redistribution of somatic lipids to the germline, which impairs health and shortens lifespan. Here, we show that exposing C. elegans to Pseudomonas aeruginosa similarly drives the rapid depletion of somatic, but not germline, lipid stores. Modulating the epigenetic landscape refines SKN-1 activity away from innate immunity targets, which alleviates negative metabolic outcomes. Similarly, exposure to oxidative stress redirects SKN-1 activity away from pathogen response genes while restoring somatic lipid distribution. In addition, activating p38/MAPK signaling in the absence of pathogens, is sufficient to drive SKN-1-dependent loss of somatic fat. These data define a SKN-1- and p38-dependent axis for coordinating pathogen responses, lipid homeostasis, and survival and identify transcriptional redirection, rather than inactivation, as a mechanism for counteracting the pleiotropic consequences of aberrant transcriptional activity.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Metabolismo dos Lipídeos , Infecções por Pseudomonas/genética , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Imunidade Inata , Sistema de Sinalização das MAP Quinases , Estresse Oxidativo , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Fatores de Transcrição/genética , Transcriptoma , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
PLoS Pathog ; 15(6): e1007893, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31206555

RESUMO

Fatty acids affect a number of physiological processes, in addition to forming the building blocks of membranes and body fat stores. In this study, we uncover a role for the monounsaturated fatty acid oleate in the innate immune response of the nematode Caenorhabditis elegans. From an RNAi screen for regulators of innate immune defense genes, we identified the two stearoyl-coenzyme A desaturases that synthesize oleate in C. elegans. We show that the synthesis of oleate is necessary for the pathogen-mediated induction of immune defense genes. Accordingly, C. elegans deficient in oleate production are hypersusceptible to infection with diverse human pathogens, which can be rescued by the addition of exogenous oleate. However, oleate is not sufficient to drive protective immune activation. Together, these data add to the known health-promoting effects of monounsaturated fatty acids, and suggest an ancient link between nutrient stores, metabolism, and host susceptibility to bacterial infection.


Assuntos
Infecções Bacterianas/imunologia , Caenorhabditis elegans/imunologia , Imunidade Inata/efeitos dos fármacos , Ácidos Oleicos/farmacologia , Animais , Ácidos Oleicos/imunologia
13.
Proc Natl Acad Sci U S A ; 116(13): 6146-6151, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850535

RESUMO

Mitochondria generate most cellular energy and are targeted by multiple pathogens during infection. In turn, metazoans employ surveillance mechanisms such as the mitochondrial unfolded protein response (UPRmt) to detect and respond to mitochondrial dysfunction as an indicator of infection. The UPRmt is an adaptive transcriptional program regulated by the transcription factor ATFS-1, which induces genes that promote mitochondrial recovery and innate immunity. The bacterial pathogen Pseudomonas aeruginosa produces toxins that disrupt oxidative phosphorylation (OXPHOS), resulting in UPRmt activation. Here, we demonstrate that Pseudomonas aeruginosa exploits an intrinsic negative regulatory mechanism mediated by the Caenorhabditis elegans bZIP protein ZIP-3 to repress UPRmt activation. Strikingly, worms lacking zip-3 were impervious to Pseudomonas aeruginosa-mediated UPRmt repression and resistant to infection. Pathogen-secreted phenazines perturbed mitochondrial function and were the primary cause of UPRmt activation, consistent with these molecules being electron shuttles and virulence determinants. Surprisingly, Pseudomonas aeruginosa unable to produce phenazines and thus elicit UPRmt activation were hypertoxic in zip-3-deletion worms. These data emphasize the significance of virulence-mediated UPRmt repression and the potency of the UPRmt as an antibacterial response.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Mitocôndrias/metabolismo , Infecções por Pseudomonas/metabolismo , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Animais , Caenorhabditis elegans/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa , Ubiquitina-Proteína Ligases/metabolismo
14.
PLoS Genet ; 15(1): e1007935, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668573

RESUMO

Nuclear hormone receptors (NHRs) are ligand-gated transcription factors that control adaptive host responses following recognition of specific endogenous or exogenous ligands. Although NHRs have expanded dramatically in C. elegans compared to other metazoans, the biological function of only a few of these genes has been characterized in detail. Here, we demonstrate that an NHR can activate an anti-pathogen transcriptional program. Using genetic epistasis experiments, transcriptome profiling analyses and chromatin immunoprecipitation-sequencing, we show that, in the presence of an immunostimulatory small molecule, NHR-86 binds to the promoters of immune effectors to activate their transcription. NHR-86 is not required for resistance to the bacterial pathogen Pseudomonas aeruginosa at baseline, but activation of NHR-86 by this compound drives a transcriptional program that provides protection against this pathogen. Interestingly, NHR-86 targets immune effectors whose basal regulation requires the canonical p38 MAPK PMK-1 immune pathway. However, NHR-86 functions independently of PMK-1 and modulates the transcription of these infection response genes directly. These findings characterize a new transcriptional regulator in C. elegans that can induce a protective host response towards a bacterial pathogen.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Imunidade Inata/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Receptores Citoplasmáticos e Nucleares/genética , Sequência de Aminoácidos/genética , Animais , Caenorhabditis elegans/microbiologia , Regulação da Expressão Gênica , Mutação , Pseudomonas aeruginosa/patogenicidade , Proteínas Quinases p38 Ativadas por Mitógeno/genética
15.
PLoS Genet ; 14(11): e1007812, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30485261

RESUMO

S-adenosylmethionine (SAM) is a donor which provides the methyl groups for histone or nucleic acid modification and phosphatidylcholine production. SAM is hypothesized to link metabolism and chromatin modification, however, its role in acute gene regulation is poorly understood. We recently found that Caenorhabditis elegans with reduced SAM had deficiencies in H3K4 trimethylation (H3K4me3) at pathogen-response genes, decreasing their expression and limiting pathogen resistance. We hypothesized that SAM may be generally required for stress-responsive transcription. Here, using genetic assays, we show that transcriptional responses to bacterial or xenotoxic stress fail in C. elegans with low SAM, but that expression of heat shock genes are unaffected. We also found that two H3K4 methyltransferases, set-2/SET1 and set-16/MLL, had differential responses to survival during stress. set-2/SET1 is specifically required in bacterial responses, whereas set-16/MLL is universally required. These results define a role for SAM in the acute stress-responsive gene expression. Finally, we find that modification of metabolic gene expression correlates with enhanced survival during stress.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , S-Adenosilmetionina/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes de Helmintos , Resposta ao Choque Térmico/genética , Código das Histonas/genética , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Pseudomonas aeruginosa/patogenicidade , Interferência de RNA , Estresse Fisiológico
16.
Curr Opin Immunol ; 54: 59-65, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29935375

RESUMO

New classes of antimicrobials that are effective therapies for infections with multi-drug resistant pathogens are urgently needed. The nematode Caenorhabditis elegans has been incorporated into small molecule screening platforms to identify anti-infective compounds that provide protection of a host during infection. The use of a live animal in these screening systems offers several advantages, including the ability to identify molecules that boost innate immune responses in a manner advantageous to host survival and compounds that disrupt bacterial virulence mechanisms. In addition, new classes of antimicrobials that target the pathogen have been uncovered, as well as interesting chemical probes that can be used to dissect new mechanisms of host-pathogen interactions.


Assuntos
Anti-Infecciosos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Animais , Caenorhabditis elegans/imunologia , Humanos
18.
G3 (Bethesda) ; 6(3): 541-9, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26818074

RESUMO

Inappropriate activation of innate immune responses in intestinal epithelial cells underlies the pathophysiology of inflammatory disorders of the intestine. Here we examine the physiological effects of immune hyperactivation in the intestine of the nematode Caenorhabditis elegans. We previously identified an immunostimulatory xenobiotic that protects C. elegans from bacterial infection by inducing immune effector expression via the conserved p38 MAP kinase pathway, but was toxic to nematodes developing in the absence of pathogen. To investigate a possible connection between the toxicity and immunostimulatory properties of this xenobiotic, we conducted a forward genetic screen for C. elegans mutants that are resistant to the deleterious effects of the compound, and identified five toxicity suppressors. These strains contained hypomorphic mutations in each of the known components of the p38 MAP kinase cassette (tir-1, nsy-1, sek-1, and pmk-1), demonstrating that hyperstimulation of the p38 MAPK pathway is toxic to animals. To explore mechanisms of immune pathway regulation in C. elegans, we conducted another genetic screen for dominant activators of the p38 MAPK pathway, and identified a single allele that had a gain-of-function (gf) mutation in nsy-1, the MAP kinase kinase kinase that acts upstream of p38 MAPK pmk-1. The nsy-1(gf) allele caused hyperinduction of p38 MAPK PMK-1-dependent immune effectors, had greater levels of phosphorylated p38 MAPK, and was more resistant to killing by the bacterial pathogen Pseudomonas aeruginosa compared to wild-type controls. In addition, the nsy-1(gf) mutation was toxic to developing animals. Together, these data suggest that the activity of the MAPKKK NSY-1 is tightly regulated as part of a physiological mechanism to control p38 MAPK-mediated innate immune hyperactivation, and ensure cellular homeostasis in C. elegans.


Assuntos
Caenorhabditis elegans/imunologia , Caenorhabditis elegans/metabolismo , Imunidade Inata , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Alelos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Resistência à Doença/genética , Resistência à Doença/imunologia , Ativação Enzimática , Expressão Gênica , Variação Genética , Sistema de Sinalização das MAP Quinases , Mutação , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Proteínas Quinases p38 Ativadas por Mitógeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...