Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(4): e2309006120, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38190516

RESUMO

Improving water use efficiency in crops is a significant challenge as it involves balancing water transpiration and CO2 uptake through stomatal pores. This study investigates the role of SlROP9, a tomato Rho of Plants protein, in guard cells and its impact on plant transpiration. The results reveal that SlROP9 null mutants exhibit reduced stomatal conductance while photosynthetic CO2 assimilation remains largely unaffected. Notably, there is a notable decrease in whole-plant transpiration in the rop9 mutants compared to the wild type, especially during noon hours when the water pressure deficit is high. The elevated stomatal closure observed in rop9 mutants is linked to an increase in reactive oxygen species formation. This is very likely dependent on the respiratory burst oxidase homolog (RBOH) NADPH oxidase and is not influenced by abscisic acid (ABA). Consistently, activated ROP9 can interact with RBOHB in both yeast and plants. In diverse tomato accessions, drought stress represses ROP9 expression, and in Arabidopsis stomatal guard cells, ABA suppresses ROP signaling. Therefore, the phenotype of the rop9 mutants may arise from a disruption in ROP9-regulated RBOH activity. Remarkably, large-scale field experiments demonstrate that the rop9 mutants display improved water use efficiency without compromising fruit yield. These findings provide insights into the role of ROPs in guard cells and their potential as targets for enhancing water use efficiency in crops.


Assuntos
Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genética , Produtos Agrícolas , Proteínas de Plantas/genética , Ácido Abscísico , Arabidopsis/genética
2.
Planta ; 229(4): 757-65, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19084995

RESUMO

The effects of chitosan (beta-1,4 linked glucosamine, a fungal elicitor), on the patterns of stomatal movement and signaling components were studied. cPTIO (NO scavenger), sodium tungstate (nitrate reductase inhibitor) or L: -NAME (NO synthase inhibitor) restricted the chitosan induced stomatal closure, demonstrating that NO is an essential factor. Similarly, catalase (H(2)O(2) scavenger) or DPI [NAD(P)H oxidase inhibitor] and BAPTA-AM or BAPTA (calcium chelators) prevented chitosan induced stomatal closure, suggesting that reactive oxygen species (ROS) and calcium were involved during such response. Monitoring the NO and ROS production in guard cells by fluorescent probes (DAF-2DA and H(2)DCFDA) indicated that on exposure to chitosan, the levels of NO rose after only 10 min, while those of ROS increased already by 5 min. cPTIO or sodium tungstate or L: -NAME prevented the rise in NO levels but did not restrict the ROS production. In contrast, catalase or DPI restricted the chitosan-induced production of both ROS and NO in guard cells. The calcium chelators, BAPTA-AM or BAPTA, did not have a significant effect on the chitosan induced rise in NO or ROS. We propose that the production of NO is an important signaling component and participates downstream of ROS production. The effects of chitosan strike a marked similarity with those of ABA or MJ on guard cells and indicate the convergence of their signal transduction pathways leading to stomatal closure.


Assuntos
Quitosana/farmacologia , Óxido Nítrico/metabolismo , Pisum sativum/efeitos dos fármacos , Epiderme Vegetal/efeitos dos fármacos , Estômatos de Plantas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ácido Abscísico/farmacologia , Quelantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Relação Dose-Resposta a Droga , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Inibidores Enzimáticos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Peróxido de Hidrogênio/farmacologia , Imidazóis/farmacologia , Cinética , Microscopia Confocal , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Oniocompostos/farmacologia , Oxidantes/farmacologia , Pisum sativum/citologia , Pisum sativum/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Estômatos de Plantas/fisiologia , Fatores de Tempo , Compostos de Tungstênio/farmacologia
3.
Plant Cell Environ ; 31(11): 1717-24, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18721267

RESUMO

Abscisic acid (ABA) raised the cytosolic pH and nitric oxide (NO) levels in guard cells while inducing stomatal closure in epidermis of Pisum sativum. Butyrate (a weak acid) reduced the cytosolic pH/NO production and prevented stomatal closure by ABA. Methylamine (a weak base) enhanced the cytosolic alkalinization and aggravated stomatal closure by ABA. The rise in guard cell pH because of ABA became noticeable after 6 min and peaked at 12 min, while NO production started at 9 min and peaked at 18 min. These results suggested that NO production was downstream of the rise in cytosolic pH. The ABA-induced increase in NO of guard cells and stomatal closure was prevented by 2-phenyl-4,4,5,5-tetramethyl imidazoline-1-oxyl 3-oxide (cPTIO, a NO scavenger) and partially by N-nitro-L-Arg-methyl ester (L-NAME, an inhibitor of NO synthase). In contrast, cPTIO or L-NAME had only a marginal effect on the pH rise induced by ABA. Ethylene glycol tetraacetic acid (EGTA, a calcium chelator) prevented ABA-induced stomatal closure while restricting cytosolic pH rise and NO production. We suggest that during ABA-induced stomatal closure, a rise in cytosolic pH is necessary for NO production. Calcium may act upstream of cytosolic alkalinization and NO production, besides its known function as a downstream component.


Assuntos
Ácido Abscísico/farmacologia , Óxido Nítrico/biossíntese , Pisum sativum/metabolismo , Estômatos de Plantas/metabolismo , Cálcio/metabolismo , Citosol/química , Concentração de Íons de Hidrogênio , Pisum sativum/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Estômatos de Plantas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...