Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncoimmunology ; 8(4): e1568809, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906661

RESUMO

Immunotherapeutic treatments in head and neck cancer clinical trials include cancer vaccines targeting foreign viral antigens or mutational neoantigens derived from cancer-expressed proteins. Anti-tumor immune responses place cancer cells under selective pressure to lose or downregulate target antigens; therefore, vaccination against virus- or host- "driver" oncogenes are proposed as a strategy to overcome immune escape. Herein, we demonstrate the impact of immunogenic viral antigens on anti-tumor response and immune editing in MOC2-E6E7, a syngeneic murine oral cancer cell line expressing HPV-16 E6 and E7 oncoproteins. Using orthotopic syngeneic models, we observed in vivo tumor growth kinetics of MOC2-E6E7 is delayed in immunocompetent mice compared to parental MOC2 tumors. In contrast, tumor growth remained similar in Rag1-/- mice lacking adaptive immunity. MOC2-E6E7 tumors demonstrated an "inflamed" or immune-activated tumor microenvironment and greater infiltration of CD8+ T cells compared to MOC2. By real-time PCR, we detected downregulation of E6 and E7 genes in MOC2-E6E7 tumors only in immunocompetent mice, suggesting the loss of ectopic viral antigen expression due to immune editing. We then assessed the efficacy of a biomaterials-based mesoporous silica rod (MSR) cancer vaccine targeting HPV-16 E7 in our model. Vaccination induced robust infiltration of antigen-specific CD8+ T cells, which led to tumor growth delay and modestly prolonged survival in MOC2-E6E7 tumors. Increased efficacy was seen in a separate head and neck cancer tumor model, mEER, which obligately expresses E7 antigen. Collectively, our data highlight the need for both immunogenicity and 'driver' status of target antigens to be considered in cancer vaccine design.

2.
ACS Appl Mater Interfaces ; 9(7): 5709-5716, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28072512

RESUMO

Carbon nanotubes (CNTs) have been used for a plethora of biomedical applications, including their use as delivery vehicles for drugs, imaging agents, proteins, DNA, and other materials. Here, we describe the synthesis and characterization of a new CNT-based contrast agent (CA) for X-ray computed tomography (CT) imaging. The CA is a hybrid material derived from ultrashort single-walled carbon nanotubes (20-80 nm long, US-tubes) and Bi(III) oxo-salicylate clusters with four Bi(III) ions per cluster (Bi4C). The element bismuth was chosen over iodine, which is the conventional element used for CT CAs in the clinic today due to its high X-ray attenuation capability and its low toxicity, which makes bismuth a more-promising element for new CT CA design. The new CA contains 20% by weight bismuth with no detectable release of bismuth after a 48 h challenge by various biological media at 37 °C, demonstrating the presence of a strong interaction between the two components of the hybrid material. The performance of the new Bi4C@US-tubes solid material as a CT CA has been assessed using a clinical scanner and found to possess an X-ray attenuation ability of >2000 Hounsfield units (HU).

3.
Nanotechnology ; 20(19): 195602, 2009 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-19420641

RESUMO

A strong interface between the single-walled carbon nanotubes (SWNTs) and polymer matrix is necessary to achieve enhanced mechanical properties of composites. In this work a series of sidewall-functionalized SWNTs have been investigated in order to evaluate the effect of functionalization on SWNT aspect ratio and composite interfacial chemistry and their role on mechanical properties of a medium density polyethylene (MDPE) matrix. Fluorinated nanotubes (F-SWNTs) were used as precursors for subsequent sidewall functionalization with long chain alkyl groups to produce an F-SWNT- C(11)H(23) derivative. The latter was refluorinated to yield a new perfluorinated derivative, F-SWNT- C(11)F(x)H(y). The functionalized SWNTs as well as the pristine SWNTs were integrated into an MDPE matrix at a 1 wt% loading. The nanotubes and composite materials were characterized with FTIR, Raman spectroscopy, NMR, XPS, AFM, SEM, TGA, DSC and tensile tests. When incorporated into polyethylene, the new perfluorinated derivative, F-SWNT- C(11)F(x)H(y), yielded the highest tensile strength value among all nanotube/MDPE composite samples, showing a 52% enhancement in comparison with the neat MDPE. The 1 wt% SWNT/MDPE composite contained nanotubes with a larger aspect ratio but, due to a lack of interfacial chemistry, it resulted in less improvement in mechanical properties compared to the composites made with the fluorinated SWNT derivatives.


Assuntos
Cristalização/métodos , Nanotecnologia/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Polietileno/química , Substâncias Macromoleculares/química , Manufaturas , Teste de Materiais , Conformação Molecular , Peso Molecular , Tamanho da Partícula , Propriedades de Superfície
4.
Nanotechnology ; 19(24): 245703, 2008 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-21825828

RESUMO

Alignment of pristine carbon nanotubes (P-CNTs) and fluorinated carbon nanotubes (F-CNTs) in nylon-6 polymer composite fibers (PCFs) has been achieved using a single-screw extrusion method. CNTs have been used as filler reinforcements to enhance the mechanical and thermal properties of nylon-6 composite fibers. The composites were fabricated by dry mixing nylon-6 polymer powder with the CNTs as the first step, then followed by the melt extrusion process of fiber materials in a single-screw extruder. The extruded fibers were stretched to their maxima and stabilized using a godet set-up. Finally, fibers were wound on a Wayne filament winder machine and tested for their tensile and thermal properties. The tests have shown a remarkable change in mechanical and thermal properties of nylon-6 polymer fibers with the addition of 0.5 wt% F-CNTs and 1.0 wt% of P-CNTs. To draw a comparison between the improvements achieved, the same process has been repeated with neat nylon-6 polymer. As a result, tensile strength has been increased by 230% for PCFs made with 0.5% F-CNTs and 1% P-CNTs as additives. These fibers have been further characterized by DSC, Raman spectroscopy and SEM which confirm the alignment of CNTs and interfacial bonding to nylon-6 polymer matrix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...