Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 354(6310): 308-312, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27846561

RESUMO

Visualizing chemical reactions as they occur requires atomic spatial and femtosecond temporal resolution. Here, we report imaging of the molecular structure of acetylene (C2H2) 9 femtoseconds after ionization. Using mid-infrared laser-induced electron diffraction (LIED), we obtained snapshots as a proton departs the [C2H2]2+ ion. By introducing an additional laser field, we also demonstrate control over the ultrafast dissociation process and resolve different bond dynamics for molecules oriented parallel versus perpendicular to the LIED field. These measurements are in excellent agreement with a quantum chemical description of field-dressed molecular dynamics.

2.
Phys Rev Lett ; 117(5): 053001, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27517769

RESUMO

Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here, we present measurements of the ionization yield for argon, krypton, and xenon with percent-level accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much needed benchmark for testing models of ionization in noble-gas atoms, such as the widely employed single-active electron approximation.

3.
Nat Commun ; 7: 11922, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27329236

RESUMO

The ability to directly follow and time-resolve the rearrangement of the nuclei within molecules is a frontier of science that requires atomic spatial and few-femtosecond temporal resolutions. While laser-induced electron diffraction can meet these requirements, it was recently concluded that molecules with particular orbital symmetries (such as πg) cannot be imaged using purely backscattering electron wave packets without molecular alignment. Here, we demonstrate, in direct contradiction to these findings, that the orientation and shape of molecular orbitals presents no impediment for retrieving molecular structure with adequate sampling of the momentum transfer space. We overcome previous issues by showcasing retrieval of the structure of randomly oriented O2 and C2H2 molecules, with πg and πu symmetries, respectively, and where their ionization probabilities do not maximize along their molecular axes. While this removes a serious bottleneck for laser-induced diffraction imaging, we find unexpectedly strong backscattering contributions from low-Z atoms.

4.
Opt Lett ; 38(20): 4204-7, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24321960

RESUMO

We present a gas jet array for use in high-order harmonic generation experiments. Precise control of the pressure in each individual gas jet has allowed a thorough investigation into mechanisms contributing to the selective enhancement observed in the harmonic spectra produced by dual-gas, multi-jet arrays. Our results reveal that in our case, the dominant enhancement mechanism is the result of a compression of the harmonic-producing gas jet due to the presence of other gas jets in the array. The individual control of the gas jets in the array also provides a promising method for enhancing the harmonic yield by precise tailoring of the length and pressure gradient of the interaction region.

5.
Phys Rev Lett ; 109(26): 263902, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23368563

RESUMO

We present a new interferometer technique whereby multiple extreme ultraviolet light pulses are generated at different positions within a single laser focus (i.e., from successive sources) with a highly controllable time delay. The interferometer technique is tested with two generating media to create two extreme ultraviolet light pulses with a time delay between them. The delay is found to be a consequence of the Gouy phase shift. Ultimately the apparatus is capable of accessing unprecedented time scales by allowing stable and repeatable delays as small as 100 zs.

6.
Opt Lett ; 36(18): 3660-2, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21931424

RESUMO

We present experimental data on strong-field ionization of atomic hydrogen by few-cycle laser pulses. We obtain quantitative agreement at the 10% level between the data and an ab initio simulation over a wide range of laser intensities and electron energies.

7.
Opt Express ; 17(23): 20833-9, 2009 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-19997317

RESUMO

We generate mode-locked picosecond pulses near 1110 nm by spectrally slicing and reamplifying an octave-spanning supercontinuum source pumped at 1550 nm. The 1110 nm pulses are near transform-limited, with 1.7 ps duration over their 1.2 nm bandwidth, and exhibit high interpulse coherence. Both the supercontinuum source and the pulse synthesis system are implemented completely in fiber. The versatile source construction suggests that pulse synthesis from sliced supercontinuum may be a useful technique across the 1000 - 2000 nm wavelength range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA