Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38948859

RESUMO

Understanding how animals coordinate movements to achieve goals is a fundamental pursuit in neuroscience. Here we explore how neurons that reside in posterior lower-order regions of a locomotor system project to anterior higher-order regions to influence steering and navigation. We characterized the anatomy and functional role of a population of ascending interneurons in the ventral nerve cord of Drosophila larvae. Through electron microscopy reconstructions and light microscopy, we determined that the cholinergic 19f cells receive input primarily from premotor interneurons and synapse upon a diverse array of postsynaptic targets within the anterior segments including other 19f cells. Calcium imaging of 19f activity in isolated central nervous system (CNS) preparations in relation to motor neurons revealed that 19f neurons are recruited into most larval motor programmes. 19f activity lags behind motor neuron activity and as a population, the cells encode spatio-temporal patterns of locomotor activity in the larval CNS. Optogenetic manipulations of 19f cell activity in isolated CNS preparations revealed that they coordinate the activity of central pattern generators underlying exploratory headsweeps and forward locomotion in a context and location specific manner. In behaving animals, activating 19f cells suppressed exploratory headsweeps and slowed forward locomotion, while inhibition of 19f activity potentiated headsweeps, slowing forward movement. Inhibiting activity in 19f cells ultimately affected the ability of larvae to remain in the vicinity of an odor source during an olfactory navigation task. Overall, our findings provide insights into how ascending interneurons monitor motor activity and shape interactions amongst rhythm generators underlying complex navigational tasks.

2.
Light Sci Appl ; 13(1): 129, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38834554

RESUMO

Mechanical forces are key regulators of cellular behavior and function, affecting many fundamental biological processes such as cell migration, embryogenesis, immunological responses, and pathological states. Specialized force sensors and imaging techniques have been developed to quantify these otherwise invisible forces in single cells and in vivo. However, current techniques rely heavily on high-resolution microscopy and do not allow interrogation of optically dense tissue, reducing their application to 2D cell cultures and highly transparent biological tissue. Here, we introduce DEFORM, deformable microlaser force sensing, a spectroscopic technique that detects sub-nanonewton forces with unprecedented spatio-temporal resolution. DEFORM is based on the spectral analysis of laser emission from dye-doped oil microdroplets and uses the force-induced lifting of laser mode degeneracy in these droplets to detect nanometer deformations. Following validation by atomic force microscopy and development of a model that links changes in laser spectrum to applied force, DEFORM is used to measure forces in 3D and at depths of hundreds of microns within tumor spheroids and late-stage Drosophila larva. We furthermore show continuous force sensing with single-cell spatial and millisecond temporal resolution, thus paving the way for non-invasive studies of biomechanical forces in advanced stages of embryogenesis, tissue remodeling, and tumor invasion.

3.
Front Neurosci ; 17: 1154549, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284663

RESUMO

Sodium potassium ATPases (Na/K pumps) mediate long-lasting, dynamic cellular memories that can last tens of seconds. The mechanisms controlling the dynamics of this type of cellular memory are not well understood and can be counterintuitive. Here, we use computational modeling to examine how Na/K pumps and the ion concentration dynamics they influence shape cellular excitability. In a Drosophila larval motor neuron model, we incorporate a Na/K pump, a dynamic intracellular Na+ concentration, and a dynamic Na+ reversal potential. We probe neuronal excitability with a variety of stimuli, including step currents, ramp currents, and zap currents, then monitor the sub- and suprathreshold voltage responses on a range of time scales. We find that the interactions of a Na+-dependent pump current with a dynamic Na+ concentration and reversal potential endow the neuron with rich response properties that are absent when the role of the pump is reduced to the maintenance of constant ion concentration gradients. In particular, these dynamic pump-Na+ interactions contribute to spike rate adaptation and result in long-lasting excitability changes after spiking and even after sub-threshold voltage fluctuations on multiple time scales. We further show that modulation of pump properties can profoundly alter a neuron's spontaneous activity and response to stimuli by providing a mechanism for bursting oscillations. Our work has implications for experimental studies and computational modeling of the role of Na/K pumps in neuronal activity, information processing in neural circuits, and the neural control of animal behavior.

4.
J Neurophysiol ; 127(4): 1098-1116, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35294308

RESUMO

Mechanisms of rhythm generation have been extensively studied in motor systems that control locomotion over terrain in limbed animals; however, much less is known about rhythm generation in soft-bodied terrestrial animals. Here we explored how muscarinic acetylcholine receptor (mAChR)-modulated rhythm-generating networks are distributed in the central nervous system (CNS) of soft-bodied Drosophila larvae. We measured fictive motor patterns in isolated CNS preparations, using a combination of Ca2+ imaging and electrophysiology while manipulating mAChR signaling pharmacologically. Bath application of the mAChR agonist oxotremorine potentiated bilaterally asymmetric activity in anterior thoracic regions and promoted bursting in posterior abdominal regions. Application of the mAChR antagonist scopolamine suppressed rhythm generation in these regions and blocked the effects of oxotremorine. Oxotremorine triggered fictive forward crawling in preparations without brain lobes. Oxotremorine also potentiated rhythmic activity in isolated posterior abdominal CNS segments as well as isolated anterior brain and thoracic regions, but it did not induce rhythmic activity in isolated anterior abdominal segments. Bath application of scopolamine to reduced preparations lowered baseline Ca2+ levels and abolished rhythmic activity. Overall, these results suggest that mAChR signaling plays a role in enabling rhythm generation at multiple sites in the larval CNS. This work furthers our understanding of motor control in soft-bodied locomotion and provides a foundation for study of rhythm-generating networks in an emerging genetically tractable locomotor system.NEW & NOTEWORTHY Using a combination of pharmacology, electrophysiology, and Ca2+ imaging, we find that signaling through mACh receptors plays a critical role in rhythmogenesis in different regions of the Drosophila larval CNS. mAChR-dependent rhythm generators reside in distal regions of the larval CNS and provide functional substrates for central pattern-generating networks (CPGs) underlying headsweep behavior and forward locomotion. This provides new insights into locomotor CPG operation in soft-bodied animals that navigate over terrain.


Assuntos
Proteínas de Drosophila , Drosophila , Locomoção , Receptores Muscarínicos , Acetilcolina/farmacologia , Animais , Proteínas de Drosophila/fisiologia , Larva/fisiologia , Locomoção/fisiologia , Oxotremorina/farmacologia , Receptores Muscarínicos/fisiologia , Escopolamina/farmacologia
5.
Curr Biol ; 31(23): 5327-5340.e5, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34666002

RESUMO

Precocious movements are widely seen in embryos of various animal species. Whether such movements via proprioceptive feedback play instructive roles in motor development or are a mere reflection of activities in immature motor circuits is a long-standing question. Here we image the emerging motor activities in Drosophila embryos that lack proprioceptive feedback and show that proprioceptive experience is essential for the development of locomotor central pattern generators (CPGs). Downstream of proprioceptive inputs, we identify a pioneer premotor circuit composed of two pairs of segmental interneurons, whose gap-junctional transmission requires proprioceptive experience and plays a crucial role in CPG formation. The circuit autonomously generates rhythmic plateau potentials via IP3-mediated Ca2+ release from internal stores, which contribute to muscle contractions and hence produce proprioceptive feedback. Our findings demonstrate the importance of self-generated movements in instructing motor development and identify the cells, circuit, and physiology at the core of this proprioceptive feedback.


Assuntos
Drosophila , Retroalimentação Sensorial , Animais , Junções Comunicantes , Interneurônios , Movimento/fisiologia
6.
Nat Commun ; 12(1): 2943, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011945

RESUMO

Typical patterned movements in animals are achieved through combinations of contraction and delayed relaxation of groups of muscles. However, how intersegmentally coordinated patterns of muscular relaxation are regulated by the neural circuits remains poorly understood. Here, we identify Canon, a class of higher-order premotor interneurons, that regulates muscular relaxation during backward locomotion of Drosophila larvae. Canon neurons are cholinergic interneurons present in each abdominal neuromere and show wave-like activity during fictive backward locomotion. Optogenetic activation of Canon neurons induces relaxation of body wall muscles, whereas inhibition of these neurons disrupts timely muscle relaxation. Canon neurons provide excitatory outputs to inhibitory premotor interneurons. Canon neurons also connect with each other to form an intersegmental circuit and regulate their own wave-like activities. Thus, our results demonstrate how coordinated muscle relaxation can be realized by an intersegmental circuit that regulates its own patterned activity and sequentially terminates motor activities along the anterior-posterior axis.


Assuntos
Drosophila melanogaster/fisiologia , Interneurônios/fisiologia , Relaxamento Muscular/fisiologia , Animais , Animais Geneticamente Modificados , Neurônios Colinérgicos/citologia , Neurônios Colinérgicos/fisiologia , Drosophila melanogaster/anatomia & histologia , Interneurônios/citologia , Larva/anatomia & histologia , Larva/fisiologia , Locomoção/fisiologia , Modelos Neurológicos , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Optogenética
7.
Nat Commun ; 11(1): 6248, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33288763

RESUMO

Optogenetics allows light-driven, non-contact control of neural systems, but light delivery remains challenging, in particular when fine spatial control of light is required to achieve local specificity. Here, we employ organic light-emitting diodes (OLEDs) that are micropatterned into linear arrays to obtain precise optogenetic control in Drosophila melanogaster larvae expressing the light-gated activator CsChrimson and the inhibitor GtACR2 within their peripheral sensory system. Our method allows confinement of light stimuli to within individual abdominal segments, which facilitates the study of larval behaviour in response to local sensory input. We show controlled triggering of specific crawling modes and find that targeted neurostimulation in abdominal segments switches the direction of crawling. More broadly, our work demonstrates how OLEDs can provide tailored patterns of light for photo-stimulation of neuronal networks, with future implications ranging from mapping neuronal connectivity in cultures to targeted photo-stimulation with pixelated OLED implants in vivo.


Assuntos
Drosophila melanogaster/fisiologia , Rede Nervosa/fisiologia , Optogenética/métodos , Células Receptoras Sensoriais/fisiologia , Animais , Larva/fisiologia , Locomoção/fisiologia , Contração Muscular/fisiologia , Estimulação Luminosa/métodos
8.
J Undergrad Neurosci Educ ; 19(1): A124-A133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33880100

RESUMO

Central pattern generators (CPGs) are neural networks that produce rhythmic motor activity in the absence of sensory input. CPGs produce 'fictive' behaviours in vitro which parallel activity seen in intact animals. CPG networks have been identified in a wide variety of model organisms and have been shown to be critical for generating rhythmic behaviours such as swimming, walking, chewing and breathing. Work with CPG preparations has led to fundamental advances in neuroscience; however, most CPG preparations involve intensive dissections and require sophisticated electrophysiology equipment, making export to teaching laboratories problematic. Here we present an integrated approach for bringing the study of locomotor CPGs in Drosophila larvae into teaching laboratories. First, we present freely available genetic constructs that enable educators to express genetically encoded calcium indicators in cells of interest in the larval central nervous system. Next, we describe how to isolate the larval central nervous system and prepare it for live imaging. We then show how to modify standard compound microscopes to enable fluorescent imaging using 3D printed materials and inexpensive optical components. Finally, we show how to use the free image analysis programme ImageJ and freely available features in the signal analysis programme DataView to analyse rhythmic CPG activity in the larval CNS. Comparison of results to those obtained on research equipment shows that signal-to-noise levels are comparable and core features of larval CPG activity can be observed. Overall, this work shows the viability of exporting live imaging experiments to low cost environments and paves the way for new teaching laboratory exercises revolving around optical imaging of CPG activity.

9.
Adv Mater ; 31(42): e1903599, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31486161

RESUMO

Fluorescence imaging is an indispensable tool in biology, with applications ranging from single-cell to whole-animal studies and with live mapping of neuronal activity currently receiving particular attention. To enable fluorescence imaging at cellular scale in freely moving animals, miniaturized microscopes and lensless imagers are developed that can be implanted in a minimally invasive fashion; but the rigidity, size, and potential toxicity of the involved light sources remain a challenge. Here, narrowband organic light-emitting diodes (OLEDs) are developed and used for fluorescence imaging of live cells and for mapping of neuronal activity in Drosophila melanogaster via genetically encoded Ca2+ indicators. In order to avoid spectral overlap with fluorescence from the sample, distributed Bragg reflectors are integrated onto the OLEDs to block their long-wavelength emission tail, which enables an image contrast comparable to conventional, much bulkier mercury light sources. As OLEDs can be fabricated on mechanically flexible substrates and structured into arrays of cell-sized pixels, this work opens a new pathway for the development of implantable light sources that enable functional imaging and sensing in freely moving animals.


Assuntos
Cálcio/metabolismo , Microscopia de Fluorescência/instrumentação , Semicondutores , Animais , Drosophila melanogaster/citologia , Camundongos , Células NIH 3T3 , Neurônios/metabolismo
11.
Sci Rep ; 6: 31117, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27484401

RESUMO

Organic light emitting diodes (OLEDs) are in widespread use in today's mobile phones and are likely to drive the next generation of large area displays and solid-state lighting. Here we show steps towards their utility as a platform technology for biophotonics, by demonstrating devices capable of optically controlling behaviour in live animals. Using devices with a pin OLED architecture, sufficient illumination intensity (0.3 mW.mm(-2)) to activate channelrhodopsins (ChRs) in vivo was reliably achieved at low operating voltages (5 V). In Drosophila melanogaster third instar larvae expressing ChR2(H134R) in motor neurons, we found that pulsed illumination from blue and green OLEDs triggered robust and reversible contractions in animals. This response was temporally coupled to the timing of OLED illumination. With blue OLED illumination, the initial rate and overall size of the behavioural response was strongest. Green OLEDs achieved roughly 70% of the response observed with blue OLEDs. Orange OLEDs did not produce contractions in larvae, in agreement with the spectral response of ChR2(H134R). The device configuration presented here could be modified to accommodate other small model organisms, cell cultures or tissue slices and the ability of OLEDs to provide patterned illumination and spectral tuning can further broaden their utility in optogenetics experiments.


Assuntos
Comportamento Animal , Drosophila melanogaster/fisiologia , Locomoção , Optogenética/instrumentação , Optogenética/métodos , Animais , Luz
12.
Neuron ; 91(3): 615-28, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27427461

RESUMO

Locomotor systems generate diverse motor patterns to produce the movements underlying behavior, requiring that motor neurons be recruited at various phases of the locomotor cycle. Reciprocal inhibition produces alternating motor patterns; however, the mechanisms that generate other phasic relationships between intrasegmental motor pools are unknown. Here, we investigate one such motor pattern in the Drosophila larva, using a multidisciplinary approach including electrophysiology and ssTEM-based circuit reconstruction. We find that two motor pools that are sequentially recruited during locomotion have identical excitable properties. In contrast, they receive input from divergent premotor circuits. We find that this motor pattern is not orchestrated by differential excitatory input but by a GABAergic interneuron acting as a delay line to the later-recruited motor pool. Our findings show how a motor pattern is generated as a function of the modular organization of locomotor networks through segregation of inhibition, a potentially general mechanism for sequential motor patterns.


Assuntos
Drosophila melanogaster , Neurônios Motores/fisiologia , Inibição Neural/fisiologia , Vias Neurais/fisiologia , Animais , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Larva/citologia , Larva/fisiologia , Locomoção/fisiologia
13.
PLoS One ; 10(9): e0136660, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26335437

RESUMO

Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs' wave-like activity lagged behind that of motoneurons by several segments. Thus, GVLIs are activated when the front of a forward motor wave reaches the second or third anterior segment. We propose that GVLIs are part of the feedback inhibition system that terminates motor activity once the front of the motor wave proceeds to anterior segments.


Assuntos
Drosophila/genética , Interneurônios/fisiologia , Larva/fisiologia , Locomoção , Neurônios Motores/fisiologia , Animais , Cálcio/metabolismo , Drosophila/fisiologia , Feminino , Ácido Glutâmico/metabolismo , Interneurônios/metabolismo , Larva/metabolismo , Masculino , Neurônios Motores/metabolismo
14.
J Neurophysiol ; 114(5): 2564-77, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26311188

RESUMO

We have established a preparation in larval Drosophila to monitor fictive locomotion simultaneously across abdominal and thoracic segments of the isolated CNS with genetically encoded Ca(2+) indicators. The Ca(2+) signals closely followed spiking activity measured electrophysiologically in nerve roots. Three motor patterns are analyzed. Two comprise waves of Ca(2+) signals that progress along the longitudinal body axis in a posterior-to-anterior or anterior-to-posterior direction. These waves had statistically indistinguishable intersegmental phase delays compared with segmental contractions during forward and backward crawling behavior, despite being ∼10 times slower. During these waves, motor neurons of the dorsal longitudinal and transverse muscles were active in the same order as the muscle groups are recruited during crawling behavior. A third fictive motor pattern exhibits a left-right asymmetry across segments and bears similarities with turning behavior in intact larvae, occurring equally frequently and involving asymmetry in the same segments. Ablation of the segments in which forward and backward waves of Ca(2+) signals were normally initiated did not eliminate production of Ca(2+) waves. When the brain and subesophageal ganglion (SOG) were removed, the remaining ganglia retained the ability to produce both forward and backward waves of motor activity, although the speed and frequency of waves changed. Bilateral asymmetry of activity was reduced when the brain was removed and abolished when the SOG was removed. This work paves the way to studying the neural and genetic underpinnings of segmentally coordinated motor pattern generation in Drosophila with imaging techniques.


Assuntos
Encéfalo/fisiologia , Sinalização do Cálcio , Gânglios dos Invertebrados/fisiologia , Locomoção/fisiologia , Neurônios Motores/fisiologia , Imagem Óptica/métodos , Potenciais de Ação , Animais , Drosophila melanogaster , Larva/fisiologia
15.
J Undergrad Neurosci Educ ; 13(3): A166-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26240526

RESUMO

The neural networks that control escape from predators often show very clear relationships between defined sensory inputs and stereotyped motor outputs. This feature provides unique opportunities for researchers, but it also provides novel opportunities for neuroscience educators. Here we introduce new teaching modules using adult Drosophila that have been engineered to express csChrimson, a red-light sensitive channelrhodopsin, in specific sets of neurons and muscles mediating visually guided escape behaviors. This lab module consists of both behavior and electrophysiology experiments that explore the neural basis of flight escape. Three preparations are described that demonstrate photo-activation of the giant fiber circuit and how to quantify these behaviors. One of the preparations is then used to acquire intracellular electrophysiology recordings from different flight muscles. The diversity of action potential waveforms and firing frequencies observed in the flight muscles make this a rich preparation to study the ionic basic of cellular excitability. By activating different cells within the giant fiber pathway we also demonstrate principles of synaptic transmission and neural circuits. Beyond conveying core neurobiological concepts it is also expected that using these cutting edge techniques will enhance student motivation and attitudes towards biological research. Data collected from students and educators who have been involved in development of the module are presented to support this notion.

16.
Nat Commun ; 6: 7924, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26263051

RESUMO

Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord.


Assuntos
Sistema Nervoso Central/anatomia & histologia , Drosophila melanogaster/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Animais , Sistema Nervoso Central/fisiologia , Larva/anatomia & histologia , Atividade Motora/fisiologia
18.
Nat Methods ; 11(3): 338-46, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24509633

RESUMO

Optogenetic tools enable examination of how specific cell types contribute to brain circuit functions. A long-standing question is whether it is possible to independently activate two distinct neural populations in mammalian brain tissue. Such a capability would enable the study of how different synapses or pathways interact to encode information in the brain. Here we describe two channelrhodopsins, Chronos and Chrimson, discovered through sequencing and physiological characterization of opsins from over 100 species of alga. Chrimson's excitation spectrum is red shifted by 45 nm relative to previous channelrhodopsins and can enable experiments in which red light is preferred. We show minimal visual system-mediated behavioral interference when using Chrimson in neurobehavioral studies in Drosophila melanogaster. Chronos has faster kinetics than previous channelrhodopsins yet is effectively more light sensitive. Together these two reagents enable two-color activation of neural spiking and downstream synaptic transmission in independent neural populations without detectable cross-talk in mouse brain slice.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Luz , Neurônios/fisiologia , Animais , Proteínas de Drosophila/genética , Dados de Sequência Molecular , Optogenética , Rodopsina/genética , Rodopsina/metabolismo
19.
Nature ; 499(7458): 295-300, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23868258

RESUMO

Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultrasensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies and mice in vivo. In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5-40-µm long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales.


Assuntos
Potenciais de Ação , Proteínas de Ligação ao Cálcio/química , Corantes Fluorescentes/química , Proteínas Luminescentes/química , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Espinhas Dendríticas/metabolismo , Neurônios GABAérgicos/metabolismo , Proteínas Luminescentes/genética , Camundongos , Imagem Molecular , Mutagênese , Engenharia de Proteínas , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia
20.
Front Mol Neurosci ; 6: 2, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23459413

RESUMO

Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Here we describe red, single-wavelength GECIs, "RCaMPs," engineered from circular permutation of the thermostable red fluorescent protein mRuby. High-resolution crystal structures of mRuby, the red sensor RCaMP, and the recently published red GECI R-GECO1 give insight into the chromophore environments of the Ca(2+)-bound state of the sensors and the engineered protein domain interfaces of the different indicators. We characterized the biophysical properties and performance of RCaMP sensors in vitro and in vivo in Caenorhabditis elegans, Drosophila larvae, and larval zebrafish. Further, we demonstrate 2-color calcium imaging both within the same cell (registering mitochondrial and somatic [Ca(2+)]) and between two populations of cells: neurons and astrocytes. Finally, we perform integrated optogenetics experiments, wherein neural activation via channelrhodopsin-2 (ChR2) or a red-shifted variant, and activity imaging via RCaMP or GCaMP, are conducted simultaneously, with the ChR2/RCaMP pair providing independently addressable spectral channels. Using this paradigm, we measure calcium responses of naturalistic and ChR2-evoked muscle contractions in vivo in crawling C. elegans. We systematically compare the RCaMP sensors to R-GECO1, in terms of action potential-evoked fluorescence increases in neurons, photobleaching, and photoswitching. R-GECO1 displays higher Ca(2+) affinity and larger dynamic range than RCaMP, but exhibits significant photoactivation with blue and green light, suggesting that integrated channelrhodopsin-based optogenetics using R-GECO1 may be subject to artifact. Finally, we create and test blue, cyan, and yellow variants engineered from GCaMP by rational design. This engineered set of chromatic variants facilitates new experiments in functional imaging and optogenetics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...