Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 167: 107697, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37976821

RESUMO

Uterine contractions are routinely monitored by tocodynamometer (TOCO) at late stage of pregnancy to predict the onset of labor. However, TOCO reveals no information on the synchrony and coherence of contractions, which are important contributors to a successful delivery. The electrohysterography (EHG) is a recording of the electrical activities that trigger the local muscles to contract. The spatial-temporal information embedded in multiple channel EHG signals make them ideal for characterizing the synchrony and coherence of uterine contraction. To proceed, contractile time-windows are identified from TOCO signals and are then used to segment out the simultaneously recorded EHG signals of different channels. We construct sample entropy SamEn and Concordance Correlation based feature ψ from these EHG segments to quantify the synchrony and coherence of contraction. To test the effectiveness of the proposed method, 122 EHG recordings in the Icelandic EHG database were divided into two groups according to the time difference between the gestational ages at recording and at delivery (TTD). Both SamEn and ψ show clear difference in the two groups (p<10-5) even when measurements were made 120 h before delivery. Receiver operating characteristic curve analysis of these two features gave AUC values of 0.834 and 0.726 for discriminating imminent labor defined with TTD ≤ 24 h. The SamEn was significantly smaller in women (0.1433) of imminent labor group than in women (0.3774) of the pregnancy group. Using an optimal cutoff value of SamEn to identify imminent labor gives sensitivity, specificity, and accuracy as high as 0.909, 0.712 and 0.743, respectively. These results demonstrate superiority in comparing to the existing SOTA methods. This study is the first research work focusing on characterizing the synchrony property of contractions from the electrohysterography signals. Despite the very limited dataset used in the validation process, the promising results open a new direction to the use of electrohysterography in obstetrics.


Assuntos
Trabalho de Parto , Monitorização Uterina , Gravidez , Feminino , Humanos , Adolescente , Contração Uterina/fisiologia , Útero/fisiologia , Eletromiografia/métodos , Trabalho de Parto/fisiologia , Contração Muscular , Monitorização Uterina/métodos
2.
PLoS One ; 18(3): e0279940, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36897856

RESUMO

The beating of cilia and flagella, which relies on an efficient conversion of energy from ATP-hydrolysis into mechanical work, offers a promising way to propel synthetic cargoes. Recent experimental realizations of such micro-swimmers, in which micron-sized beads are propelled by isolated and demembranated flagella from the green algae Chlamydomonas reinhardtii (C. reinhardtii), revealed a variety of propulsion modes, depending in particular on the calcium concentration. Here, we investigate theoretically and numerically the propulsion of a bead as a function of the flagellar waveform and the attachment geometries between the bead and the flagellum. To this end, we take advantage of the low Reynolds number of the fluid flows generated by the micro-swimmer, which allows us to neglect fluid inertia. By describing the flagellar waveform as a superposition of a static component and a propagating wave, and using resistive-force theory, we show that the asymmetric sideways attachment of the flagellum to the bead makes a contribution to the rotational velocity of the micro-swimmer that is comparable to the contribution caused by the static component of the flagellar waveform. Remarkably, our analysis reveals the existence of a counter-intuitive propulsion regime in which an increase in the size of the cargo, and hence its drag, leads to an increase in some components of the velocity of the bead. Finally, we discuss the relevance of the uncovered mechanisms for the fabrication of synthetic, bio-actuated medical micro-robots for targeted drug delivery.


Assuntos
Chlamydomonas reinhardtii , Flagelos , Cílios , Fenômenos Mecânicos , Cálcio da Dieta
3.
Soft Matter ; 18(25): 4767-4777, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35703562

RESUMO

Bio-hybrid micro-swimmers, composed of biological entities integrated with synthetic constructs, actively transport cargo by converting chemical energy into mechanical work. Here, using isolated and demembranated flagella from green algae Chlamydomonas reinhardtii (C. reinhardtii), we build efficient axonemally-driven micro-swimmers that consume ATP to propel micron-sized beads. Depending on the calcium concentration, we observed two main classes of motion: whereas beads move along curved trajectories at calcium concentrations below 0.03 mM, they are propelled along straight paths when the calcium concentration increases. In this regime, they reached velocities of approximately 20 µm s-1, comparable to human sperm velocity in vivo. We relate this transition to the properties of beating axonemes, in particular the reduced static curvature with increasing calcium concentration. Our designed system has potential applications in the fabrication of synthetic micro-swimmers, and in particular, bio-actuated medical micro-robots for targeted drug delivery.


Assuntos
Cálcio , Chlamydomonas reinhardtii , Flagelos , Humanos , Masculino , Sementes , Espermatozoides
4.
Phys Rev Lett ; 128(9): 094501, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35302836

RESUMO

Building upon the intrinsic properties of Navier-Stokes dynamics, namely the prevalence of intense vortical structures and the interrelationship between vorticity and strain rate, we propose a simple framework to quantify the extreme events and the smallest scales of turbulence. We demonstrate that our approach is in excellent agreement with the best available data from direct numerical simulations of isotropic turbulence, with Taylor-scale Reynolds numbers up to 1300. We additionally highlight a shortcoming of prevailing intermittency models due to their disconnection from the observed correlation between vorticity and strain. Our work accentuates the importance of this correlation as a crucial step in developing an accurate understanding of intermittency in turbulence.

5.
Philos Trans A Math Phys Eng Sci ; 380(2218): 20210088, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35034489

RESUMO

Intense fluctuations of energy dissipation rate in turbulent flows result from the self-amplification of strain rate via a quadratic nonlinearity, with contributions from vorticity (via the vortex stretching mechanism) and pressure-Hessian-which are analysed here using direct numerical simulations of isotropic turbulence on up to [Formula: see text] grid points, and Taylor-scale Reynolds numbers in the range 140-1300. We extract the statistics involved in amplification of strain and condition them on the magnitude of strain. We find that strain is self-amplified by the quadratic nonlinearity, and depleted via vortex stretching, whereas pressure-Hessian acts to redistribute strain fluctuations towards the mean-field and hence depletes intense strain. Analysing the intense fluctuations of strain in terms of its eigenvalues reveals that the net amplification is solely produced by the third eigenvalue, resulting in strong compressive action. By contrast, the self-amplification acts to deplete the other two eigenvalues, whereas vortex stretching acts to amplify them, with both effects cancelling each other almost perfectly. The effect of the pressure-Hessian for each eigenvalue is qualitatively similar to that of vortex stretching, but significantly weaker in magnitude. Our results conform with the familiar notion that intense strain is organized in sheet-like structures, which are in the vicinity of, but never overlap with tube-like regions of intense vorticity due to fundamental differences in their amplifying mechanisms. This article is part of the theme issue 'Scaling the turbulence edifice (part 1)'.

6.
Comput Biol Med ; 136: 104644, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34271407

RESUMO

Preterm labor is the leading cause of neonatal morbidity and mortality in newborns and has attracted significant research attention from many scientific areas. The relationship between uterine contraction and the underlying electrical activities makes uterine electrohysterogram (EHG) a promising direction for detecting and predicting preterm births. However, due to the scarcity of EHG signals, especially those leading to preterm births, synthetic algorithms have been used to generate artificial samples of preterm birth type in order to eliminate bias in the prediction towards normal delivery, at the expense of reducing the feature effectiveness in automatic preterm detection based on machine learning. To address this problem, we quantify the effect of synthetic samples (balance coefficient) on the effectiveness of features and form a general performance metric by using several feature scores with relevant weights that describe their contributions to class segregation. In combination with the activation/inactivation functions that characterize the effect of the abundance of training samples on the accuracy of the prediction of preterm and normal birth delivery, we obtained an optimal sample balance coefficient that compromises the effect of synthetic samples in removing bias toward the majority group (i.e., normal delivery and the side effect of reducing the importance of features). A more realistic predictive accuracy was achieved through a series of numerical tests on the publicly available TPEHG database, therefore demonstrating the effectiveness of the proposed method.


Assuntos
Nascimento Prematuro , Algoritmos , Bases de Dados Factuais , Feminino , Humanos , Recém-Nascido , Aprendizado de Máquina , Gravidez , Contração Uterina
7.
Nat Commun ; 11(1): 5852, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203875

RESUMO

Turbulent fluid flows are ubiquitous in nature and technology, and are mathematically described by the incompressible Navier-Stokes equations. A hallmark of turbulence is spontaneous generation of intense whirls, resulting from amplification of the fluid rotation-rate (vorticity) by its deformation-rate (strain). This interaction, encoded in the non-linearity of Navier-Stokes equations, is non-local, i.e., depends on the entire state of the flow, constituting a serious hindrance in turbulence theory and even establishing regularity of the equations. Here, we unveil a novel aspect of this interaction, by separating strain into local and non-local contributions utilizing the Biot-Savart integral of vorticity in a sphere of radius R. Analyzing highly-resolved numerical turbulent solutions to Navier-Stokes equations, we find that when vorticity becomes very large, the local strain over small R surprisingly counteracts further amplification. This uncovered self-attenuation mechanism is further shown to be connected to local Beltramization of the flow, and could provide a direction in establishing the regularity of Navier-Stokes equations.

8.
Sci Adv ; 6(9): eaaz2717, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32158950

RESUMO

The essence of turbulent flow is the conveyance of energy through the formation, interaction, and destruction of eddies over a wide range of spatial scales-from the largest scales where energy is injected down to the smallest scales where it is dissipated through viscosity. Currently, there is no mechanistic framework that captures how the interactions of vortices drive this cascade. We show that iterations of the elliptical instability, arising from the interactions between counter-rotating vortices, lead to the emergence of turbulence. We demonstrate how the nonlinear development of the elliptical instability generates an ordered array of antiparallel secondary filaments. The secondary filaments mutually interact, leading to the formation of even smaller tertiary filaments. In experiments and simulations, we observe two and three iterations of this cascade, respectively. Our observations indicate that the elliptical instability could be one of the fundamental mechanisms by which the turbulent cascade develops.

9.
Bull Math Biol ; 81(8): 3342-3361, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30903593

RESUMO

Both chemical and mechanical fields are known to play a major role in morphogenesis. In plants, the phytohormone auxin and its directional transport are essential for the formation of robust patterns of organs, such as flowers or leaves, known as phyllotactic patterns. The transport of auxin was recently shown to be affected by mechanical signals, and conversely, auxin accumulation in incipient organs affects the mechanical properties of the cells. The precise interaction between mechanical fields and auxin transport, however, is poorly understood. In particular, it is unknown whether transport is sensitive to the strain or to the stress exerted on a given cell. Here, we investigate the nature of this coupling with the help of theoretical models. Namely, we introduce the effects of either mechanical stress or mechanical strain in a model of auxin transport and compare the patterns predicted with available experimental results, in which the tissue is perturbed by ablations, chemical treatments, or genetic manipulations. We also study the robustness of the patterning mechanism to noise and investigate the effect of a shock that changes abruptly its parameters. Although the model predictions with the two different feedbacks are often indistinguishable, the strain feedback seems to better agree with some of the experiments. The computational modeling approach used here, which enables us to distinguish between several possible mechanical feedbacks, offers promising perspectives to elucidate the role of mechanics in tissue development, and may help providing insight into the underlying molecular mechanisms.


Assuntos
Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Desenvolvimento Vegetal/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Transporte Biológico Ativo , Fenômenos Biomecânicos , Padronização Corporal/fisiologia , Polaridade Celular/fisiologia , Simulação por Computador , Conceitos Matemáticos , Meristema/crescimento & desenvolvimento , Meristema/fisiologia , Morfogênese/fisiologia
11.
Phys Rev Lett ; 119(14): 148101, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29053324

RESUMO

The chemotactic motion of eukaryotic cells such as leukocytes or metastatic cancer cells relies on membrane protrusions driven by the polymerization and depolymerization of actin. Here we show that the response of the actin system to a receptor stimulus is subject to a threshold value that varies strongly from cell to cell. Above the threshold, we observe pronounced cell-to-cell variability in the response amplitude. The polymerization time, however, is almost constant over the entire range of response amplitudes, while the depolymerization time increases with increasing amplitude. We show that cell-to-cell variability in the response amplitude correlates with the amount of Arp2/3, a protein that enhances actin polymerization. A time-delayed feedback model for the cortical actin concentration is consistent with all our observations and confirms the role of Arp2/3 in the observed cell-to-cell variability. Taken together, our observations highlight robust regulation of the actin response that enables a reliable timing of cell movement.


Assuntos
Amoeba/fisiologia , Citoesqueleto/metabolismo , Locomoção , Actinas/metabolismo , Proteínas do Citoesqueleto , Polimerização
12.
Phys Rev Lett ; 119(12): 128701, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-29341665

RESUMO

We present results from moist convection in a mixture of pressurized sulfur hexafluoride (liquid and vapor), and helium (gas) to model the wet and dry components of the Earth's atmosphere. To allow for homogeneous nucleation, we operate the experiment close to critical conditions. We report on the nucleation of microdroplets in the wake of large cold liquid drops falling through the supersaturated atmosphere and show that the homogeneous nucleation is caused by isobaric cooling of the saturated sulfur hexafluoride vapor. Our results carry over to atmospheric clouds: falling hail and cold rain drops may enhance the heterogeneous nucleation of microdroplets in their wake under supersaturated atmospheric conditions. We also observed that under appropriate circumstances settling microdroplets form a rather stable horizontal cloud layer, which separates regions of super- and subcritical saturation.

13.
Phys Rev E ; 96(1-1): 012142, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29347086

RESUMO

We investigate statistical properties of trails formed by a random process incorporating aggregation, fragmentation, and diffusion. In this stochastic process, which takes place in one spatial dimension, two neighboring trails may combine to form a larger one, and also one trail may split into two. In addition, trails move diffusively. The model is defined by two parameters which quantify the fragmentation rate and the fragment size. In the long-time limit, the system reaches a steady state, and our focus is the limiting distribution of trail weights. We find that the density of trail weight has power-law tail P(w)∼w^{-γ} for small weight w. We obtain the exponent γ analytically and find that it varies continuously with the two model parameters. The exponent γ can be positive or negative, so that in one range of parameters small-weight trails are abundant and in the complementary range they are rare.

14.
Phys Rev Lett ; 117(14): 148102, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27740793

RESUMO

Biological systems with their complex biochemical networks are known to be intrinsically noisy. Here we investigate the dynamics of actin polymerization of amoeboid cells, which are close to the onset of oscillations. We show that the large phenotypic variability in the polymerization dynamics can be accurately captured by a generic nonlinear oscillator model in the presence of noise. We determine the relative role of the noise with a single dimensionless, experimentally accessible parameter, thus providing a quantitative description of the variability in a population of cells. Our approach, which rests on a generic description of a system close to a Hopf bifurcation and includes the effect of noise, can characterize the dynamics of a large class of noisy systems close to an oscillatory instability.


Assuntos
Citoesqueleto de Actina , Amoeba , Quimiotaxia , Dinâmica não Linear , Modelos Biológicos
15.
Phys Rev Lett ; 116(12): 124502, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27058081

RESUMO

Three-dimensional turbulent flows are characterized by a flux of energy from large to small scales, which breaks the time reversal symmetry. The motion of tracer particles, which tend to lose energy faster than they gain it, is also irreversible. Here, we connect the time irreversibility in the motion of single tracers with vortex stretching and thus with the generation of the smallest scales.

16.
PLoS One ; 10(3): e0118443, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25793276

RESUMO

The spontaneous emergence of contraction-inducing electrical activity in the uterus at the beginning of labor remains poorly understood, partly due to the seemingly contradictory observation that isolated uterine cells are not spontaneously active. It is known, however, that the expression of gap junctions increases dramatically in the approach to parturition, by more than one order of magnitude, which results in a significant increase in inter-cellular electrical coupling. In this paper, we build upon previous studies of the activity of electrically excitable smooth muscle cells (myocytes) and investigate the mechanism through which the coupling of these cells to electrically passive cells results in the generation of spontaneous activity in the uterus. Using a recently developed, realistic model of uterine muscle cell dynamics, we investigate a system consisting of a myocyte coupled to passive cells. We then extend our analysis to a simple two-dimensional lattice model of the tissue, with each myocyte being coupled to its neighbors, as well as to a random number of passive cells. We observe that different dynamical regimes can be observed over a range of gap junction conductances: at low coupling strength, corresponding to values measured long before delivery, the activity is confined to cell clusters, while the activity for high coupling, compatible with values measured shortly before delivery, may spread across the entire tissue. Additionally, we find that the system supports the spontaneous generation of spiral wave activity. Our results are both qualitatively and quantitatively consistent with observations from in vitro experiments. In particular, we demonstrate that the increase in inter-cellular electrical coupling observed experimentally strongly facilitates the appearance of spontaneous action potentials that may eventually lead to parturition.


Assuntos
Fenômenos Eletrofisiológicos , Miométrio/fisiologia , Potenciais de Ação , Animais , Feminino , Modelos Biológicos , Células Musculares/fisiologia , Ratos , Fatores de Tempo
17.
Phys Rev Lett ; 113(5): 054501, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25126923

RESUMO

In three-dimensional turbulent flows, the flux of energy from large to small scales breaks time symmetry. We show here that this irreversibility can be quantified by following the relative motion of several Lagrangian tracers. We find by analytical calculation, numerical analysis, and experimental observation that the existence of the energy flux implies that, at short times, two particles separate temporally slower forwards than backwards, and the difference between forward and backward dispersion grows as t^{3}. We also find the geometric deformation of material volumes, defined by four points spanning an initially regular tetrahedron, to show sensitivity to the time reversal with an effect growing linearly in t. We associate this with the structure of the strain rate in the flow.

18.
Proc Natl Acad Sci U S A ; 111(21): 7558-63, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24794529

RESUMO

The statistical properties of turbulence differ in an essential way from those of systems in or near thermal equilibrium because of the flux of energy between vastly different scales at which energy is supplied and at which it is dissipated. We elucidate this difference by studying experimentally and numerically the fluctuations of the energy of a small fluid particle moving in a turbulent fluid. We demonstrate how the fundamental property of detailed balance is broken, so that the probabilities of forward and backward transitions are not equal for turbulence. In physical terms, we found that in a large set of flow configurations, fluid elements decelerate faster than accelerate, a feature known all too well from driving in dense traffic. The statistical signature of rare "flight-crash" events, associated with fast particle deceleration, provides a way to quantify irreversibility in a turbulent flow. Namely, we find that the third moment of the power fluctuations along a trajectory, nondimensionalized by the energy flux, displays a remarkable power law as a function of the Reynolds number, both in two and in three spatial dimensions. This establishes a relation between the irreversibility of the system and the range of active scales. We speculate that the breakdown of the detailed balance characterized here is a general feature of other systems very far from equilibrium, displaying a wide range of spatial scales.


Assuntos
Aceleração , Movimentos do Ar , Hidrodinâmica , Modelos Químicos , Simulação por Computador
19.
Artigo em Inglês | MEDLINE | ID: mdl-24483558

RESUMO

In turbulent suspensions, collision rates determine how rapidly particles coalesce or react with each other. To determine the collision rate, many numerical studies rely on the ghost collision approximation (GCA), which simply records how often pairs of point particles come within a threshold distance. In many applications, the suspended particles stick (or in the case of liquid droplets, coalesce) upon collision, and it is the frequency of first contact which is of interest. If a pair of "ghost" particles undergoes multiple collisions, the GCA may overestimate the true collision rate. Here, using fully resolved direct numerical simulations of turbulent flows at moderate Reynolds number (Re(λ)=130), we investigate the prevalence and properties of multiple collisions. We find the probability P(N(c)) for a given pair of ghost particles to collide N(c) times to be of the form P(N(c))=ßα(N(c)) for N(c)>1, where α and ß are coefficients which depend upon the particle inertia. We also investigate the statistics of the times that ghost particles remain in contact. We show that the probability density function of the contact time is different for the first collision. The difference is explained by the effect of caustics in the phase space of the suspended particles. We demonstrate that, as a result of multiple collisions, the GCA leads to a small, but systematic overestimate of the collision rate, which is of the order of ∼15% when the particle inertia is small, and slowly decreases when inertia increases.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(4 Pt 1): 041903, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23214611

RESUMO

The synchronization of biological activity with the alternation of day and night (circadian rhythm) is performed in the brain by a group of neurons, constituting the suprachiasmatic nucleus (SCN). The SCN is divided into two subgroups of oscillating cells: the ventrolateral (VL) neurons, which are exposed to light (photic signal), and the dorsomedial (DM) neurons, which are coupled to the VL cells. When the coupling between these neurons is strong enough, the system synchronizes with the photic period. Upon increasing the cell coupling, the entrainment of the DM cells has been recently shown to occur via a very sharp (jumping) transition when the period of the photic input is larger than the intrinsic period of the cells. Here, we characterize this transition with a simple realistic model. We show that two bifurcations possibly lead to the disappearance of the endogenous mode. Using a mean-field model, we show that the jumping transition results from a supercritical Hopf-like bifurcation. This finding implies that both the period and strength of the stimulating photic signal, and the relative fraction of cells in the VL and DM compartments, are crucial in determining the synchronization of the system.


Assuntos
Biofísica/métodos , Núcleo Supraquiasmático/fisiologia , Animais , Ritmo Circadiano/fisiologia , Cricetinae , Hipotálamo/fisiologia , Luz , Modelos Biológicos , Modelos Estatísticos , Neurônios/metabolismo , Neurônios/fisiologia , Oscilometria/métodos , Periodicidade , Estimulação Luminosa , Fotoperíodo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...