Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2401335, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693088

RESUMO

Exploration of multifunctional integrated catalysts is of great significance for photocatalysis toward practical application. Herein, a 1D confined nanoreactor with a heterogeneous core-shell structure is designed for synergies of efficient catalysis and temperature monitoring by custom encapsulation of Z-scheme heterojunction CuS quantum dots/BiVO4 (CuS QDs/BiVO4) and Y2O2S-Er, Yb. The dispersed active sites created by the QDs with high surface energy improve the mass transfer efficiency, and the efficient electron transport channels at the heterogeneous interface extend the carrier lifetime, which endows the nanoreactor with excellent catalytic performance. Meanwhile, real-time temperature monitoring is realized based on the thermally coupled levels 2H11/2/4S3/2→4I15/2 of Er3+ using fluorescence intensity ratio, which enables the monitorable photocatalysis. Furthermore, the nanoreactor with a multidimensional structure increases effective intermolecular collisions to facilitate the catalytic process by restricting the reaction within distinct enclosed spaces and circumvents potential unknown interaction effects. The design of multi-space nanoconfined reactors opens up a new avenue to modulate catalyst function, providing a unique perspective for photocatalytic applications in the mineralization of organic pollutants, hydrogen production, and nitrogen fixation.

2.
Langmuir ; 40(3): 1825-1839, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38180481

RESUMO

Developing efficient catalysts to degrade pollutants in water is a very important way to alleviate water pollution. However, it is crucial but challenging to broaden the functions of conventional photocatalysts and improve their environmental adaptability. In this paper, Bi(Er3+/Yb3+)OBr/polyacrylonitrile (BOB-EY/PAN) composite fibers with a swallowed-embedded structure assembled with nanopetal-rich microflowers were designed and fabricated, integrating photocatalytic and temperature-monitoring functions simultaneously. Their unique structure brings a large specific surface area, and the doping of rare earth ions improves the separation efficiency of electron-hole pairs, which enhances the photocatalytic efficiency and endows the fibers with a temperature-monitoring function at the same time. Under simulated sunlight irradiation, the nanofibers show a maximum degradation efficiency of 99.2% for tetracycline hydrochloride (TC) with a degradation constant of K as high as 0.078 min-1. Based on the fluorescence intensity ratio (FIR), the two thermally coupled levels of Er3+ in the nanofibers, 2H11/2 and 4S3/2, provide real-time temperature feedback, displaying a maximum relative sensitivity as high as 0.0215 K-1 at 303 K. Dual-functional BOB-EY/PAN composite nanofibers show great potential for industrial wastewater disposition, providing solutions for wastewater purification in special scenarios.

3.
Environ Sci Pollut Res Int ; 30(55): 117545-117561, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872340

RESUMO

Herein, an electrospinning porous nanofiber with large specific surface area, excellent flexibility, remarkable tensile strength, and high stability of thermal degradation has been developed by loading Ho3+/Yb3+ co-doped BiOBr/g-C3N4 (BHY/CN) heterojunction photocatalysts on polyacrylonitrile (PAN) nanofibers. The optimized BHY/CN-2 nanofiber demonstrates outstanding photocatalytic activity for the degradation of 98.83% tetracycline (TC, 60 min) and 99.06% rhodamine B (RhB, 90 min) under simulated sunlight irradiation, and maintains a high level of reusability and recycling stability in three cycles. In addition, temperature monitoring of the catalytic degradation process can be feedback by (5F4, 5S2) → 5I8 and 5F5 → 5I8 radiation transitions of Ho3+ with excellent sensitivity. More importantly, the nanofiber luminescence performance is enhanced by the doping of g-C3N4, which maintain the effective upconversion luminescence properties even in water, providing a reliable reference for real-time monitoring and feedback of the operating temperature, and further expanding the application fields of photocatalysts.


Assuntos
Antibacterianos , Luminescência , Porosidade , Temperatura , Catálise
4.
Langmuir ; 39(40): 14344-14356, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37755730

RESUMO

Bi2WO6:Ho3+, Yb3+/g-C3N4 (BHY/CN) photocatalysts are successfully loaded on polyacrylonitrile (PAN) nanofibers by electrospinning technology, which combines an upconversion effect and heterojunctions to achieve dual-functional characteristics. Polymer-modified photocatalytic materials offer a large specific surface area of 24.1 m2/g and a pore volume of 0.1 cm3/g, promoting the utility of solar energy. The introduction of rare earth ions and g-C3N4 optimizes the structural band gap, which broadens the light absorption range and promotes electron transfer. Moreover, the heterojunction between Bi2WO6 and g-C3N4 has suppressed the complexation of photoinduced carriers, further improving catalytic performance. The optimized photocatalysts have higher photocatalytic activity with degrading 92.6% tetracycline-hydrochloride (120 min) under simulated sunlight irradiation. The optical thermometry has also been achieved based on the fluorescence intensity ratio technique, where the maximum absolute and relative sensitivity values of BHY/CN-1:6@PAN are 3.322% K-1 and 0.842% K-1, respectively. This dual-functional nanofibers with excellent mechanical properties provide noncontact temperature feedback and efficient catalytic performance for better wastewater treatment and ecological restoration in extreme harsh environments.

5.
Dalton Trans ; 52(27): 9261-9274, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37366609

RESUMO

The effective double-site metal ion replacement strategy was adopted to optimize the crystal field environment of a Mn4+-activated fluoride phosphor. In this study, a series of K2yBa1-ySi1-xGexF6:Mn4+ phosphors with optimized fluorescence intensity, excellent water resistance, and outstanding thermal stability was synthesized. The composition adjustment includes two different types of ion substitution based on the BaSiF6:Mn4+ red phosphor: [Ge4+ → Si4+] and [K+ → Ba2+]. X-ray diffraction and theoretical analysis revealed that Ge4+ and K+ could be successfully introduced into BaSiF6:Mn4+ to form new solid solution K2yBa1-ySi1-xGexF6:Mn4+ phosphors. The emission intensity enhancement and slight wavelength shift were detected in different cation replacement procedures. Furthermore, K0.6Ba0.7Si0.5Ge0.5F6:Mn4+ with superior color stability performance possessed a negative thermal quenching phenomenon. Excellent water resistance was also found, which was more reliable than K2SiF6:Mn4+ commercial phosphor. A warm WLED with low correlated color temperature (CCT = 4000 K) and high color rendering index (Ra = 90.6) was successfully packaged by using K0.6Ba0.7Si0.5Ge0.5F6:Mn4+ as the red light component, and it also exhibited high stability for different currents. These findings demonstrate that the effective double-site metal ion replacement strategy can open up a new avenue for designing new Mn4+-doped fluoride phosphors to improve the optical properties of WLEDs.

6.
Nanotechnology ; 33(9)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34798625

RESUMO

All-inorganic dual-phase CsPbBr3-Cs4PbBr6quantum dots (CPB QDs)-based polyacrylonitrile (PAN) fiber synthesized by supersaturated recrystallization and electrospinning technique possesses characteristics of homogeneous morphology, high crystallinity and solution sensitivity. Under 365 nm laser excitation, CPB@PAN fiber exhibits surprising trace-recording capability attributing to the splash-enhanced fluorescence (FL) performance with a narrow-band emission at 477-515 nm. In the process of ethanol anhydrous (EA) and water splashing, the CPB@PAN fiber presents conspicuous blue and green emission when contacting with EA and water, and maintains intense blue and green FL for more than 4 months. These experimental and theoretical findings provide a facile technology for the development of biological protection display, biotic detection and moisture-proof forewarning based on the trace-recording performance of CPB@PAN fiber.

7.
Nanotechnology ; 32(43)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34280909

RESUMO

Miscible-order fluoride-phosphate blocky phosphor (FBP), composed with ordered-phase of NaYF4crystals and unordered phase of tin-fluorophosphate glass, is prepared by a two-step process and luminescent properties of FBPs embedded with different particle sizes of NaYF4crystals are presented. High-frequency fluorescence from higher metastable5DJ(J = 1, 2 and 3) energy levels are effectively released in Eu3+doped fluoride crystals. Taking the blue emission of Sn2+as the framework, multi-peak emissions from metastable energy levels are controlled to adjust the color coordinates of the FBP to the white-light region, which the color rendering index (CRI) reaches 89. Tunable color FBP with high CRI retains splendid luminescence property of fluoride, providing a potential candidate for the development of white LED.

8.
Opt Lett ; 46(5): 1161-1164, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649682

RESUMO

Lithium niobate on insulator (LNOI) is an emerging photonic platform with great promise for use in future optical communications, nonlinear optics, and microwave photonics. An important integrated photonic building block, active waveguide amplifiers, however, are still missing in the LNOI platform. Here, we report an efficient and compact waveguide amplifier based on erbium-doped LNOI waveguides, achieved using a sequence of erbium-doped crystal growth, ion slicing, and lithography-based waveguide fabrication. Using a compact 5 mm long waveguide, we demonstrate an on-chip net gain of >5dB for 1530 nm signal light with a relatively low pump power of 21 mW at 980 nm. The efficient LNOI waveguide amplifiers could become an important fundamental element in future lithium niobate photonic integrated circuits.

9.
Nat Commun ; 11(1): 1785, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286258

RESUMO

In recent years, surface-enhanced Raman scattering (SERS) of a molecule/metal-semiconductor hybrid system has attracted considerable interest and regarded as the synergetic contribution of the electromagnetic and chemical enhancements from the incorporation of noble metal into semiconductor nanomaterials. However, the underlying mechanism is still to be revealed in detail. Herein, we report an irreversible accumulated SERS behavior induced by near-infrared (NIR) light irradiating on a 4-mercaptobenzoic acid linked with silver and silver-doped titanium dioxide (4MBA/Ag/Ag-doped TiO2) hybrid system. With increasing irradiation time, the SERS intensity of 4MBA shows an irreversible exponential increase, and the Raman signal of the Ag/Ag-doped TiO2 substrate displays an exponential decrease. A microscopic understanding of the time-dependent SERS behavior is derived based on the microanalysis of the Ag/Ag-doped TiO2 nanostructure and the molecular dynamics, which is attributed to three factors: (1) higher crystallinity of Ag/Ag-doped TiO2 substrate; (2) photo-induced charge transfer; (3) charge-induced molecular reorientation.

10.
Sci Rep ; 10(1): 926, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969625

RESUMO

Multivariate terbium-complexes were incorporated into polyacrylonitrile (PAN) and electrospun into flexible multifunctional nanofibers with a uniform diameter of ~200 nm. Fluorescence comparison in multi-ligand-binding nanofibers under ultraviolet (UV) radiation verifies that the differentiated ß-diketone ligands with dual functions are the primary cause of the spectral fluctuation, adequately illustrating the available methods for the quantification of intermolecular reciprocities between organic ligands and central Tb3+ ions. Especially under 308 nm UVB-LED pumping, the total emission spectral power of supramolecular Tb-complexes/PAN nanofibers are identified to be 2.88 µW and the total emission photon number reaches to 7.94 × 1012 cps which are nearly six times higher than those of the binary complex ones in the visible region, respectively. By modifying the sorts of organic ligands, the luminous flux and luminous efficacy of multi-ligand Tb-complexes/PAN nanofibers are up to 1553.42 µlm and 13.72 mlm/W, respectively. Efficient photon-releasing and intense green-emission demonstrate that the polymer-capped multi-component terbium-complexes fibers have potential prospects for making designable flexible optoelectronic devices.

11.
RSC Adv ; 10(67): 41004-41012, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-35519182

RESUMO

Na(Y1-x-y Ho x Yb y )F4/PAN (NYF-HY/PAN) composite fibers were synthesized using an electrospinning method, and the sub-micron crystals embedded in the fibers had complete hexagonal crystal structures. Under 977 nm laser excitation, strong green and red up-conversion (UC) emission that originated from flexible fibers were due to the radiative transitions (5F4, 5S2) → 5I8 and 5F5 → 5I8 of Ho3+, respectively. The effective green fluorescence emission (539 and 548 nm) can be applied to micro-domain non-contact temperature measurements, realizing rapid and dynamic temperature acquisition in a complex environment without destroying the temperature field. In the temperature range of 313-393 K, the absolute and relative sensitivity of the fibers are 0.00373 K-1 and 0.723% K-1, respectively, which indicates that the NYF-HY/PAN composite fibers have good thermal sensitivity. Composite fibers in which crystallites are embedded have superior properties, with great stability, high sensitivity, and excellent flexibility, providing a reliable reference for developing temperature-sensing materials for the biomedical field.

12.
Rev Sci Instrum ; 90(9): 096101, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31575229

RESUMO

Refractive index of optical material of powder is measured not as easily as a bulk material. Here, the prism coupling technique in combination with the immersion method is proposed to measure the refractive index of an optical material of powder. First, the powder material to be measured was dispersed in α-bromonaphthalene (C10H7Br) liquid to form a suspension mixture. The refractive index of the mixture, together with that of pure C10H7Br, was then measured at the wavelengths of 632.8, 1311, and 1553 nm using a commercial prism coupler. From the measured index values of pure C10H7Br and powder-dispersed mixture, the refractive index of the powder material was obtained on the basis of the Maxwell-Garnett model. Microcrystal powder from a LiNbO3 single-crystal, which has the known refractive index values, has been exemplified to demonstrate the method. The results show that the method is feasible with an accuracy of ±0.05.

13.
Mater Sci Eng C Mater Biol Appl ; 81: 177-181, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28887962

RESUMO

We developed a highly efficient optical thermometer based on intensity ratio of upconversion green fluorescence of Er3+/Yb3+-codoped NaYF4 microcrystals. The sensor consists simply of a 980nm laser diode, one narrow-band interference filter, two lenses, one Si-photocell and one multimeter, while being without use of spectrometer and additional electronics. The device not only has a simple, compact structure (hence a low cost), but also displays highly efficient sensing performance, characterized by large signal-to-noise ratio due to strong fluorescence intensity, high thermal resolution and sensitivity, which have the values 1.3K and 1.24×10-2K-1, respectively, at the physiological temperature 310K. The excellent sensing performance of the device was further confirmed by the results of the measurements repeated using a spectrometer. The thermometer is highly generalized that can be applied to other luminescent materials, and shows great potential for the physiological temperature sensing in biological tissues and cells.


Assuntos
Termômetros , Érbio , Fluorescência , Fluoretos , Luminescência , Ítrio
14.
Opt Express ; 25(8): 8653-8658, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28437942

RESUMO

Ti4+-diffused Zr4+/Er3+-codoped LiNbO3 strip waveguide was fabricated on an X-cut LiNbO3 substrate by thermal diffusion in sequence of Er3+, Zr4+ and Ti4+. Secondary ion mass spectrometry study shows that the Ti4+ ions follow a sum of two error functions in the width direction and a Gauss function in the depth direction of the waveguide. Both Er3+ and Zr4+ profiles follow the desired Gauss function, and entirely cover the Ti4+ profile. Optical study shows that the waveguide is TE or TM single mode at 1.5 µm wavelength, and has a loss of 0.3 (0.5) dB/cm for the TM (TE) mode. In the case of 980 nm pumping, the waveguide shows stable 1547 nm signal output under high-power pumping without optical damage observed, and a net gain of 1.1 dB/cm is obtained for the available pump power of 120 mW.

15.
ACS Nano ; 11(4): 4237-4246, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28355076

RESUMO

Using CMOS-compatible Pd catalysts, we demonstrated the formation of high-mobility ⟨111⟩-oriented GaSb nanowires (NWs) via vapor-solid-solid (VSS) growth by surfactant-assisted chemical vapor deposition through a complementary experimental and theoretical approach. In contrast to NWs formed by the conventional vapor-liquid-solid (VLS) mechanism, cylindrical-shaped Pd5Ga4 catalytic seeds were present in our Pd-catalyzed VSS-NWs. As solid catalysts, stoichiometric Pd5Ga4 was found to have the lowest crystal surface energy and thus giving rise to a minimal surface diffusion as well as an optimal in-plane interface orientation at the seed/NW interface for efficient epitaxial NW nucleation. These VSS characteristics led to the growth of slender NWs with diameters down to 26.9 ± 3.5 nm. Over 95% high crystalline quality NWs were grown in ⟨111⟩ orientation for a wide diameter range of between 10 and 70 nm. Back-gated field-effect transistors (FETs) fabricated using the Pd-catalyzed GaSb NWs exhibit a superior peak hole mobility of ∼330 cm2 V-1 s-1, close to the mobility limit for a NW channel diameter of ∼30 nm with a free carrier concentration of ∼1018 cm-3. This suggests that the NWs have excellent homogeneity in phase purity, growth orientation, surface morphology and electrical characteristics. Contact printing process was also used to fabricate large-scale assembly of Pd-catalyzed GaSb NW parallel arrays, confirming the potential constructions and applications of these high-performance electronic devices.

16.
Rev Sci Instrum ; 87(9): 096105, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27782605

RESUMO

A number of Li-deficient MgO-doped LiNbO3 (LN) crystals with different Li2O contents ranging from 43.4 mol. % to 44.5 mol. % were prepared by carrying out the Li-poor vapor transport equilibration treatment on 5 mol. % (in growth melt) MgO-doped LN crystals. Unclamped electro-optic (EO) coefficients γ13 and γ33 of these crystals were measured by Mach-Zehnder interferometry. The results show that γ13 (γ33) increases linearly by ∼14% (11%) as the Li2O content decreases from 44.5 mol. % of the as-grown state to 43.4 mol. % of the Li-deficient state. This feature is desired for the EO application of the Li-deficient MgO:LN crystal.

17.
Opt Lett ; 41(11): 2513-6, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27244402

RESUMO

We report on a Ti-diffused near-stoichiometric (NS) LiTaO3 strip waveguide fabricated by diffusion of an 8 µm wide, 160 nm thick Ti-strip followed by Li-rich vapor transport equilibration. It is found that the waveguide surface caves in ∼60 nm below the crystal surface. X-ray single-crystal diffraction shows that the indentation is due to Ti-induced lattice contraction. Optical studies show that the waveguide is in an NS composition environment, supports TE and TM single-mode propagation at 1.5 µm wavelength, is polarization insensitive, and has a shallow mode field profile and a loss of 0.2/0.3 dB/cm for the TE/TM mode. Secondary ion mass spectrometry analysis shows that the Ti profile follows a sum of two error functions in the width direction and a Gaussian function in the depth direction of the waveguide. With the optimized fabrication condition, the waveguide is promising for developing an optical-damage-resistant device that requires a shallow mode field profile.

18.
Opt Lett ; 40(22): 5307-10, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26565861

RESUMO

We report a near-stoichiometric Ti:Zr:LiNbO(3) strip waveguide fabricated from a congruent substrate with a technological process in the following sequence: Zr4+-diffusion-doping, diffusion of 8-µm-wide, 100-nm-thick Ti strips, and post-Li-rich vapor transport equilibration. We show that Zr(4+)-doping has little effect on the LiNbO(3) refractive index, and the waveguide is in a near-stoichiometric environment. The waveguide well supports both the TE and TM modes, shows weak polarization dependence, is in single mode at the 1.5 µm wavelength, and has a loss of ≤0.6/0.8 dB/cm for the TE/TM modes. A secondary ion mass spectrometry analysis shows that the Zr(4+)-profile part with a concentration above the threshold of photorefractive damage entirely covers the waveguide, implying that the waveguide would be optical-damage resistant.

19.
Opt Lett ; 40(20): 4715-8, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26469602

RESUMO

We report an electro-optically tunable optical filter based on a parallel structure of two long period gratings in the two same Ti:LiNbO3 strip waveguides: one 675-µm-pitch grating in one waveguide and another 880-µm-pitch grating in the other waveguide. The stop-band is observed in the 1.1-1.3 (1.4-1.6) µm spectral region for the grating pitch 675 (880) µm. Its contrast increases linearly to ∼30 dB as the voltage is increased to 300 V, and the linearity is similar for the two cases of 675 and 880 µm pitches. Higher than 300 V, the contrast decreases due to photorefractive (PR) effect and/or over-coupling. Accompanying the contrast modulation, the resonant wavelength is simultaneously linearly tuned by making use of the PR effect. For the 675 (880) µm pitch, the tuning range is 160 (200) nm for the 400 (300) V voltage change range. With the two gratings, one can realize >360 nm super-broadband filtering.

20.
Nat Commun ; 6: 8241, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26354497

RESUMO

Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...