Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1279: 341777, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827675

RESUMO

Salivary melatonin is a clinically used biomarker for diagnosing circadian rhythm sleep disorders. Current melatonin detection assays are complex, expensive, and in many cases do not adequately measure low levels of salivary melatonin. Precisely measuring melatonin levels at multiple time points is crucial for determining dim light melatonin onset to evaluate its circadian fluctuation as well as the extent of circadian disruption and consequently adapt treatment regimens. Moreover, melatonin low levels in saliva challenges the reliability of routine clinical testing. This paper presents the development of a novel, highly sensitive, yet cost-effective, colorimetric assay for the rapid detection of salivary melatonin utilizing aptamer-AuNPs. Among several types of the aptamer tested, the 36-mer MLT-A-2 aptamer-AuNP probe showed the highest sensitivity with a melatonin limit of detection of 0.0011 nM along with a limit of quantification of 0.0021 nM in saliva. Moreover, our assay showed preferential interaction with melatonin when tested in presence of other structurally similar counter-targets. Taken together, this study provides new parameters for a melatonin assay that meets adequate levels of sensitivity and selectivity. The developed colorimetric assay could be adapted in a point-of-care system for profiling salivary melatonin levels at multiple time points during 24 h, crucial for accurately diagnosing and monitoring circadian rhythm sleep disorders and beyond.


Assuntos
Melatonina , Nanopartículas Metálicas , Transtornos do Sono do Ritmo Circadiano , Humanos , Transtornos do Sono do Ritmo Circadiano/diagnóstico , Transtornos do Sono do Ritmo Circadiano/tratamento farmacológico , Ouro , Ritmo Circadiano , Colorimetria , Reprodutibilidade dos Testes , Saliva
2.
Anal Chim Acta ; 1251: 340971, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-36925277

RESUMO

Circadian desynchrony with the external light-dark cycle influences the rhythmic secretion of melatonin which is among the first signs of circadian rhythm sleep disorders. An accurate dim light melatonin onset (established indicator of circadian rhythm sleep disorders) measurement requires lengthy assays, and antibody affinities alterations, especially in patients with circadian rhythm disorders whose melatonin salivary levels vary significantly, making antibodies detection mostly inadequate. In contrast, aptamers with their numerous advantages (e.g., target selectivity, structural flexibility in tuning binding affinities, small size, etc.) can become preferable biorecognition molecules for salivary melatonin detection with high sensitivity and specificity. This study thoroughly characterizes the structural property and binding mechanism of a single-stranded DNA aptamer full sequence (MLT-C-1) and its truncated versions (MLT-A-2, MLT-A-4) to decipher its optimal characteristics for saliva melatonin detection. We use circular dichroism spectroscopy to determine aptamers' conformational changes under different ionic strengths and showed that aptamers display a hairpin loop structure where few base pairs in the stem play a significant role in melatonin binding and formation of aptamer stabilized structure. Through microscale thermophoresis, aptamers demonstrated a high binding affinity in saliva samples (MLT-C-1F Kd = 12.5 ± 1.7 nM; MLT-A-4F Kd = 11.2 ± 1.6 nM; MLT-A-2F Kd = 2.4 ± 2.8 nM; limit-of-detection achieved in pM, highest sensitivity attained for MLT-A-2F aptamer with the lowest detection limit of 1.35 pM). Our data suggest that aptamers are promising as biorecognition molecules and provide the baseline parameters for the development of an aptamer-based point-of-care diagnostic system for melatonin detection and accurate profiling of its fluctuations in saliva.


Assuntos
Aptâmeros de Nucleotídeos , Relógios Circadianos , Melatonina , Transtornos do Sono do Ritmo Circadiano , Transtornos do Sono-Vigília , Humanos , Transtornos do Sono do Ritmo Circadiano/diagnóstico , Ritmo Circadiano , Aptâmeros de Nucleotídeos/análise , Saliva/química
3.
Clin Transl Med ; 12(11): e949, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36394205

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the coronavirus family that causes the novel coronavirus disease first diagnosed in 2019 (COVID-19). Although many studies have been carried out in recent months to determine why the disease clinical presentations and outcomes can vary significantly from asymptomatic to severe or lethal, the underlying mechanisms are not fully understood. It is likely that unique individual characteristics can strongly influence the broad disease variability; thus, tailored diagnostic and therapeutic approaches are needed to improve clinical outcomes. The circadian clock is a critical regulatory mechanism orchestrating major physiological and pathological processes. It is generally accepted that more than half of the cell-specific genes in any given organ are under circadian control. Although it is known that a specific role of the circadian clock is to coordinate the immune system's steady-state function and response to infectious threats, the links between the circadian clock and SARS-CoV-2 infection are only now emerging. How inter-individual variability of the circadian profile and its dysregulation may play a role in the differences noted in the COVID-19-related disease presentations, and outcome remains largely underinvestigated. This review summarizes the current evidence on the potential links between circadian clock dysregulation and SARS-CoV-2 infection susceptibility, disease presentation and progression, and clinical outcomes. Further research in this area may contribute towards novel circadian-centred prognostic, diagnostic and therapeutic approaches for COVID-19 in the era of precision health.


Assuntos
COVID-19 , Relógios Circadianos , Carrapatos , Animais , SARS-CoV-2
4.
Biotechnol Adv ; 59: 107961, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35427723

RESUMO

The internally driven 24-h cycle in humans, called circadian rhythm, controls physiological, metabolic, and hormonal processes, and is tied to the circadian clocks ticking in most of the cells and tissues. The central clock, located in suprachiasmatic nuclei of the hypothalamus, is directly influenced by external cues, particularly light, and entrains the peripheral clocks through neural and hormonal pathways to the external light-dark cycle. However, peripheral clocks also have self-sustained circadian rhythmicity and feeding is the potent synchronizer. The internal clock system regulates the sleep-wake cycle and maintains stress responses through the hypothalamus-pituitary-adrenal axis and autonomic pathways. Any misalignment in this complex network could lead to circadian clock disruption and endocrine and metabolic dysfunction that may induce inflammatory responses. The detrimental consequences of such dysfunction are broad and can lead to serious health problems; however, the extent of the circadian disruption is difficult to assess. New promising techniques based on biosensors and point-of-care devices using aptamers - single-stranded DNA or RNA biorecognition molecules that can measure biomarkers of stress, sleep, and circadian rhythms in bodily fluids such as saliva with high sensitivity and specificity - can provide timely and accurate diagnosis and allow for effective implementation of behavioral and therapeutic interventions. This review provides detailed insight into the complex crosstalk between stress, sleep, and circadian rhythm, their relationship with the body's homeostasis, and the consequences of circadian dysregulation. The review also summarizes the mechanisms of aptamer-based biosensors and/or point-of-care devices developed to date for the detection of salivary biomarkers linked to stress, sleep, and circadian rhythm. Lastly, the review outlines the knowledge gaps in the literature related to the detection of lower concentrations of biomarkers in saliva and discusses the prospects of aptamer-based detection of salivary biomarkers from a high-precision perspective that is crucial for clinical diagnosis, at a time when circadian disruption is evident in unprecedented proportions across the globe.


Assuntos
Ritmo Circadiano , Núcleo Supraquiasmático , Biomarcadores , Biotecnologia , Ritmo Circadiano/genética , Humanos , Sono/fisiologia , Núcleo Supraquiasmático/metabolismo
5.
Chem Phys Lipids ; 226: 104834, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31778665

RESUMO

Synthesis of giant unilamellar vesicles (GUVs) of charged and uncharged lipids at physiological salt concentration is presented using the starch hydrogel method as an example of the gel assisted synthesis method. The swelling of the gel is assisted by the presence of a high amount of amylopectin in starch and yields giant-sized vesicles, which are unilamellar in nature. This method holds promise since starch is a commonly available cheap bio-compatible material. This work indicates that native starch yields vesicles of better size range as compared to the acid-treated starch. It is demonstrated that contrary to the common belief, pre-hydration of bilayers is not critical to the success of this method. The synthesis of GUVs in physiological salt concentrations is possible since the salt does not produce any osmotic effect on its own. At low starch concentration, the size of the vesicles is found to correlate with the swelling factor. The conjugate effect of the starch concentration and ion leads to the change in the swelling factor of the gel and thereby influence the size and architecture of the vesicles. Also, interactions between starch and lipid play an important role in the formation of the giant vesicles.


Assuntos
Amido/química , Lipossomas Unilamelares/síntese química , Tamanho da Partícula , Propriedades de Superfície , Lipossomas Unilamelares/química
6.
Pharmaceutics ; 11(7)2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31262096

RESUMO

Oral squamous cell carcinoma (OSCC), which encompasses the oral cavity-derived malignancies, is a devastating disease causing substantial morbidity and mortality in both men and women. It is the most common subtype of the head and neck squamous cell carcinoma (HNSCC), which is ranked the sixth most common malignancy worldwide. Despite promising advancements in the conventional therapeutic approaches currently available for patients with oral cancer, many drawbacks are still to be addressed; surgical resection leads to permanent disfigurement, altered sense of self and debilitating physiological consequences, while chemo- and radio-therapies result in significant toxicities, all affecting patient wellbeing and quality of life. Thus, the development of novel therapeutic approaches or modifications of current strategies is paramount to improve individual health outcomes and survival, while early tumour detection remains a priority and significant challenge. In recent years, drug delivery systems and chronotherapy have been developed as alternative methods aiming to enhance the benefits of the current anticancer therapies, while minimizing their undesirable toxic effects on the healthy non-cancerous cells. Targeted drug delivery systems have the potential to increase drug bioavailability and bio-distribution at the site of the primary tumour. This review confers current knowledge on the diverse drug delivery methods, potential carriers (e.g., polymeric, inorganic, and combinational nanoparticles; nanolipids; hydrogels; exosomes) and anticancer targeted approaches for oral squamous cell carcinoma treatment, with an emphasis on their clinical relevance in the era of precision medicine, circadian chronobiology and patient-centred health care.

7.
Artigo em Inglês | MEDLINE | ID: mdl-17482510

RESUMO

The complexes of Cr(III), Mn(II) and Ni(II) were synthesized with macrocyclic ligand i.e. 5,11-dimethyl-6,12-diethyl-dione-1,2,4,7,9,10-hexazacyclododeca -1,4,6,10-tetraene. The ligand (L) was prepared by [2+2] condensation reaction of 2,3-pentanedione and semicarbazide hydrochloride. These complexes were found to have the general composition [Cr(L)X(2)]X and [M(L)X(2)] (where M=Mn(II) and Ni(II); X=Cl(-), NO(3)(-), (1/2)SO(4)(2-), NCS(-) and L=ligand [N(6)]). The ligand and its transition metal complexes were characterized by the elemental analysis, molar conductance, magnetic susceptibility, mass, IR, electronic and EPR spectral studies. On the basis of IR, electronic and EPR spectral studies, an octahedral geometry has been assigned for these complexes except sulphato complexes which are of five coordinated geometry.


Assuntos
Compostos Macrocíclicos/química , Metais Pesados/química , Nitrogênio/química , Compostos Organometálicos/química , Cromo/química , Condutividade Elétrica , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Ligantes , Magnetismo , Manganês/química , Níquel/química , Espectrofotometria Infravermelho
8.
Artigo em Inglês | MEDLINE | ID: mdl-17317288

RESUMO

Cobalt(II) complexes of general composition [Co(L)X(2)] and [Co(L(1))X(2)] where (X=NO(3)(-), CH(3)COO(-), Cl(-), Br(-), NCS(-), (1/2)SO(4)(-2)); L=5,11-diethyl-6,12-dimethyl-3,8-dithione-1,2,4,7,9,10-hexaaza cyclododeca-1,4,6,10-tetraene and L(1)=5,11-diethyl-6,12-dimethyl-3,8-dione-1,2,4,7,9,10-hexaaza cyclododeca-1,4,6,10-tetraene with tetradentate 12-membered macrocyclic ligands have been synthesized and characterized by elemental analysis, magnetic susceptibility, IR, electronic and electon spin resonance spectral studies. The various physico-chemical techniques suggest a coordination number six (octahedral geometry) for chloro, nitrato, bromo and thiocyanato complexes, and five-coordinated trigonal bipyramidal geometry for sulphato complexes. All the complexes are of high spin type showing magnetic moment corresponding to three unpaired electrons. All the complexes were also screened against bacteria and pathogenic fungi in vitro.


Assuntos
Cobalto/química , Compostos Macrocíclicos/química , Tiossemicarbazonas/química , Bactérias/efeitos dos fármacos , Condutividade Elétrica , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Fungos/efeitos dos fármacos , Ligantes , Compostos Macrocíclicos/farmacologia , Magnetismo , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Espectrofotometria Infravermelho , Tiossemicarbazonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...