Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 287(20): 4401-4414, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32096906

RESUMO

Yeast amino acid transporters of the APC superfamily are responsible for the proton motive force-driven uptake of amino acids into the cell, which for most secondary transporters is a reversible process. The l-lysine proton symporter Lyp1 of Saccharomyces cerevisiae is special in that the Michaelis constant from out-to-in transport ( Kmout→in ) is much lower than Kmin→out , which allows accumulation of l-lysine to submolar concentration. It has been proposed that high intracellular lysine is part of the antioxidant mechanism of the cell. The molecular basis for the unique kinetic properties of Lyp1 is unknown. We compared the sequence of Lyp1 with APC para- and orthologues and find structural features that set Lyp1 apart, including differences in extracellular loop regions. We screened the extracellular loops by alanine mutagenesis and determined Lyp1 localization and activity and find positions that affect either the localization or activity of Lyp1. Half of the affected mutants are located in the extension of extracellular loop 3 or in a predicted α-helix in extracellular loop 4. Our data indicate that extracellular loops not only connect the transmembrane helices but also serve functionally important roles.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/análise , Sistemas de Transporte de Aminoácidos Básicos/genética , Biologia Computacional , Cinética , Lisina/metabolismo , Modelos Moleculares , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética
2.
Sci Rep ; 8(1): 13789, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30213985

RESUMO

Super-resolution imaging and single-particle tracking require cells to be immobile as any movement reduces the resolution of the measurements. Here, we present a method based on APTES-glutaraldehyde coating of glass surfaces to immobilize cells without compromising their growth. Our method of immobilization is compatible with Saccharomyces cerevisiae, Escherichia coli, and synthetic cells (here, giant-unilamellar vesicles). The method introduces minimal background fluorescence and is suitable for imaging of single particles at high resolution. With S. cerevisiae we benchmarked the method against the commonly used concanavalin A approach. We show by total internal reflection fluorescence microscopy that modifying surfaces with ConA introduces artifacts close to the glass surface, which are not present when immobilizing with the APTES-glutaraldehyde method. We demonstrate validity of the method by measuring the diffusion of membrane proteins in yeast with single-particle tracking and of lipids in giant-unilamellar vesicles with fluorescence recovery after photobleaching. Importantly, the physical properties and shape of the fragile GUVs are not affected upon binding to APTES-glutaraldehyde coated glass. The APTES-glutaraldehyde is a generic method of immobilization that should work with any cell or synthetic system that has primary amines on the surface.


Assuntos
Células Artificiais/metabolismo , Escherichia coli/metabolismo , Glutaral/farmacologia , Microscopia de Fluorescência/métodos , Saccharomyces cerevisiae/metabolismo , Lipossomas Unilamelares/metabolismo , Concanavalina A/farmacologia , Escherichia coli/crescimento & desenvolvimento , Imagem Óptica/métodos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Propriedades de Superfície/efeitos dos fármacos
3.
Nat Commun ; 9(1): 501, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402931

RESUMO

The plasma membrane (PM) of Saccharomyces cerevisiae contains membrane compartments, MCC/eisosomes and MCPs, named after the protein residents Can1 and Pma1, respectively. Using high-resolution fluorescence microscopy techniques we show that Can1 and the homologous transporter Lyp1 are able to diffuse into the MCC/eisosomes, where a limited number of proteins are conditionally trapped at the (outer) edge of the compartment. Upon addition of substrate, the immobilized proteins diffuse away from the MCC/eisosomes, presumably after taking a different conformation in the substrate-bound state. Our data indicate that the mobile fraction of all integral plasma membrane proteins tested shows extremely slow Brownian diffusion through most of the PM. We also show that proteins with large cytoplasmic domains, such as Pma1 and synthetic chimera of Can1 and Lyp1, are excluded from the MCC/eisosomes. We hypothesize that the distinct localization patterns found for these integral membrane proteins in S. cerevisiae arises from a combination of slow lateral diffusion, steric exclusion, and conditional trapping in membrane compartments.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/química , Membrana Celular/metabolismo , ATPases Translocadoras de Prótons/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Membrana Celular/ultraestrutura , Difusão , Recuperação de Fluorescência Após Fotodegradação , Cinética , Microdomínios da Membrana , Conformação Proteica , Transporte Proteico , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Mol Cell ; 64(6): 1035-1047, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27889453

RESUMO

The molecular machinery responsible for DNA replication, the replisome, must efficiently coordinate DNA unwinding with priming and synthesis to complete duplication of both strands. Due to the anti-parallel nature of DNA, the leading strand is copied continuously, while the lagging strand is produced by repeated cycles of priming, DNA looping, and Okazaki-fragment synthesis. Here, we report a multidimensional single-molecule approach to visualize this coordination in the bacteriophage T7 replisome by simultaneously monitoring the kinetics of loop growth and leading-strand synthesis. We show that loops in the lagging strand predominantly occur during priming and only infrequently support subsequent Okazaki-fragment synthesis. Fluorescence imaging reveals polymerases remaining bound to the lagging strand behind the replication fork, consistent with Okazaki-fragment synthesis behind and independent of the replication complex. Individual replisomes display both looping and pausing during priming, reconciling divergent models for the regulation of primer synthesis and revealing an underlying plasticity in replisome operation.


Assuntos
Bacteriófago T7/genética , DNA Primase/genética , Replicação do DNA , DNA Viral/genética , Bacteriófago T7/metabolismo , Bacteriófago T7/ultraestrutura , DNA/biossíntese , DNA/genética , DNA Primase/metabolismo , DNA Primase/ultraestrutura , DNA Viral/metabolismo , DNA Viral/ultraestrutura , Cinética , Imagem Individual de Molécula/métodos , Imagem com Lapso de Tempo/métodos
5.
Biophys J ; 111(1): 25-7, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27338860

RESUMO

Tagging of individual proteins with genetically encoded fluorescent proteins (FPs) has been used extensively to study localization and interactions in live cells. Recent developments in single-molecule localization microscopy have enabled the dynamic visualization of individual tagged proteins inside living cells. However, tagging proteins with FPs is not without problems: formation of insoluble aggregates and inhibition of native functions of the protein are well-known issues. Previously reported artifacts manifest themselves at all expression levels of the FP-tagged proteins, making the design of control experiments relatively straightforward. Here, we describe a previously uncharacterized mislocalization artifact of Entacmaea quadricolor red fluorescent protein variants that is detectable at the single-molecule level in live Escherichia coli cells.


Assuntos
Escherichia coli/metabolismo , Proteínas Luminescentes/metabolismo , Viabilidade Microbiana , Imagem Individual de Molécula , Escherichia coli/fisiologia , Transporte Proteico , Proteína Vermelha Fluorescente
6.
PLoS Genet ; 11(8): e1005482, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26317348

RESUMO

Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD'2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD'. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD'2C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template.


Assuntos
Dano ao DNA/genética , DNA Polimerase Dirigida por DNA/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Resposta SOS em Genética/genética , Replicação do DNA/genética , DNA Bacteriano/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/efeitos da radiação , Ativação Enzimática/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/efeitos da radiação , Processamento de Proteína Pós-Traducional/genética , Recombinases Rec A/genética , Transcrição Gênica/genética , Raios Ultravioleta
7.
Mol Biosyst ; 11(10): 2699-708, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26198886

RESUMO

Recent technical advances have made it possible to visualize single molecules inside live cells. Microscopes with single-molecule sensitivity enable the imaging of low-abundance proteins, allowing for a quantitative characterization of molecular properties. Such data sets contain information on a wide spectrum of important molecular properties, with different aspects highlighted in different imaging strategies. The time-lapsed acquisition of images provides information on protein dynamics over long time scales, giving insight into expression dynamics and localization properties. Rapid burst imaging reveals properties of individual molecules in real-time, informing on their diffusion characteristics, binding dynamics and stoichiometries within complexes. This richness of information, however, adds significant complexity to analysis protocols. In general, large datasets of images must be collected and processed in order to produce statistically robust results and identify rare events. More importantly, as live-cell single-molecule measurements remain on the cutting edge of imaging, few protocols for analysis have been established and thus analysis strategies often need to be explored for each individual scenario. Existing analysis packages are geared towards either single-cell imaging data or in vitro single-molecule data and typically operate with highly specific algorithms developed for particular situations. Our tool, iSBatch, instead allows users to exploit the inherent flexibility of the popular open-source package ImageJ, providing a hierarchical framework in which existing plugins or custom macros may be executed over entire datasets or portions thereof. This strategy affords users freedom to explore new analysis protocols within large imaging datasets, while maintaining hierarchical relationships between experiments, samples, fields of view, cells, and individual molecules.


Assuntos
Processamento de Imagem Assistida por Computador , Proteínas/metabolismo , Algoritmos , Interpretação Estatística de Dados , Conjuntos de Dados como Assunto , Microscopia de Fluorescência/métodos , Imagem com Lapso de Tempo/métodos , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...