Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Rev. Hosp. Ital. B. Aires (2004) ; 43(3): 153-159, sept. 2023.
Artigo em Espanhol | LILACS, UNISALUD, BINACIS | ID: biblio-1519056

RESUMO

El consumo de probióticos, prebióticos y posbióticos, o su combinación, puede contribuir a mantener una microbiota intestinal saludable ya que permite la regulación de su disbiosis en el caso de algunas enfermedades o trastornos, principalmente en los trastornos gastrointestinales funcionales (TGIF). El microbioma intestinal es protagonista esencial en la fisiopatología de los TGIF a través de sus funciones metabólicas y nutricionales, el mantenimiento de la integridad de la mucosa intestinal y la regulación de la respuesta inmunitaria. Las investigaciones realizadas hasta la fecha indican que los probióticos, prebióticos y posbióticos pueden tener efectos inmunomoduladores directos y clínicamente relevantes. Existen pruebas del uso de esta familia de bióticos en individuos sanos para mejorar la salud general y aliviar los síntomas en una serie de enfermedades como los cólicos infantiles. La colonización y establecimiento de la microbiota comienza en el momento del nacimiento; los primeros 2-3 años de vida son fundamentales para el desarrollo de una comunidad microbiana abundante y diversa. Diversos estudios científicos realizados mediante técnicas tradicionales dependientes de cultivo y más recientemente por técnicas moleculares han observado diferencias en las poblaciones bacterianas de bebés sanos y aquellos que sufren TGIF, estos últimos caracterizados por un aumento de especies patógenas y una menor población de bifidobacterias y lactobacilos, en comparación con los primeros. En tal contexto, se considera que la microbiota intestinal como protagonista en el desarrollo de esos trastornos, entre ellos los cólicos infantiles, a través de sus funciones metabólicas, nutricionales, de mantenimiento de la integridad de la mucosa intestinal y regulación de la respuesta inmunitaria. Esto ha abierto la puerta al estudio de la utilización de prebióticos, probióticos y posbióticos en el tratamiento y/o prevención de los TGIF infantiles. El parto vaginal y de término así como la lactancia son fundamentales en la constitución de una microbiota saludable. Como herramientas de apoyo, existen estudios de eficacia que sustentan la administración de esta familia de bióticos, principalmente en los casos en que la lactancia no sea posible o esté limitada. (AU)


The consumption of probiotics, prebiotics, and postbiotics, or a combination of them, can contribute to maintaining a healthy intestinal microbiota as it allows the regulation of its dysbiosis in the case of some diseases or disorders, mainly in functional gastrointestinal disorders (FGIDs). The gut microbiome is an essential player in the pathophysiology of FGIDs through its metabolic and nutritional functions, the maintenance of intestinal mucosal integrity, and the regulation of the immune response. Research results thus far indicate that probiotics, prebiotics, and postbiotics may have direct and clinically relevant immunomodulatory effects. There is evidence regarding the prescription of this family of biotics in healthy individuals to improve overall health and alleviate symptoms in many conditions like infantile colic. The colonization and microbiota establishment begins at birth; the first 2-3 years of life are critical for developing an abundant and diverse microbial community. Several scientific studies performed by traditional culture-dependent techniques and more recently by molecular techniques have observed differences in the bacterial populations of healthy infants and those suffering from FGIDs, the latter characterized by an increase in pathogenic species and a lower population of bifidobacteria and lactobacilli, compared to the former. In this context, the intestinal microbiota plays a leading role in the onset of these disorders, including infantile colic, through its metabolic and nutritional functions, maintenance of the integrity of the intestinal mucosa, and regulation of the immune response. That has opened the door to the study of prebiotics, probiotics, and postbiotics usage in the treatment and or prevention of infantile FGIDs. Vaginal and term delivery and breastfeeding are fundamental in the constitution of a healthy microbiota. As supportive tools, there are efficacy studies that support the administration of this family of biotics, mainly in cases where lactation is not possible or is limited.


Assuntos
Humanos , Cólica/microbiologia , Probióticos , Prebióticos , Simbióticos , Microbioma Gastrointestinal , Gastroenteropatias/microbiologia , Lactação , Cólica/dietoterapia , Cólica/fisiopatologia , Cólica/prevenção & controle , Alimento Funcional , Gastroenteropatias/dietoterapia , Gastroenteropatias/fisiopatologia , Gastroenteropatias/prevenção & controle
2.
J Appl Microbiol ; 133(4): 2375-2389, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35778976

RESUMO

AIMS: To characterize the fermentation process and bacterial diversity of sorghum silage inoculated with Lactiplantibacillus plantarum LpAv, Pediococcus pentosaceus PpM and Lacticaseibacillus paracasei LcAv. METHODS AND RESULTS: Chopped sorghum was ensiled using the selected strains. Physicochemical parameters (Ammonia Nitrogen/Total Nitrogen, Dry Matter, Crude Protein, Acid Detergent Fibre, Neutral Detergent Fibre, Acid Detergent Lignin, Ether Extract and Ashes), bacterial counts, cell cytometry and 16sRNA sequencing were performed to characterize the ensiling process and an animal trial (BALB/c mice) was conducted in order to preliminary explore the potential of sorghum silage to promote animal gut health. After 30 days of ensiling, the genus Lactobacillus comprised 68.4 ± 2.3% and 73.5 ± 1.8% of relative abundance, in control and inoculated silages respectively. Richness (Chao1 index) in inoculated samples, but not in control silages, diminished along ensiling, suggesting the domination of fermentation by the inoculated LAB. A trend in conferring enhanced protection against Salmonella infection was observed in the mouse model used to explore the potential to promote gut health of sorghum silage. CONCLUSIONS: The LAB strains used in this study were able to dominate sorghum fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report using metaprofiling of 16sRNA to characterize sorghum silage, showing a microbiological insight where resident and inoculated LAB strains overwhelmed the epiphytic microbiota, inhibiting potential pathogens of the genus Klebsiella.


Assuntos
Lactobacillales , Sorghum , Amônia/metabolismo , Animais , Bactérias/genética , Bactérias/metabolismo , Detergentes , Grão Comestível/metabolismo , Éteres , Fermentação , Lactobacillales/genética , Lactobacillales/metabolismo , Lignina/metabolismo , Camundongos , Nitrogênio/metabolismo , Extratos Vegetais , Silagem/microbiologia , Sorghum/microbiologia
3.
Annu Rev Food Sci Technol ; 13: 385-407, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35333590

RESUMO

Life expectancy has dramatically increased over the past 200 years, but modern life factors such as environmental exposure, antibiotic overuse, C-section deliveries, limited breast-feeding, and diets poor in fibers and microbes could be associated with the rise of noncommunicable diseases such as overweight, obesity, diabetes, food allergies, and colorectal cancer as well as other conditions such as mental disorders. Microbial interventions that range from transplanting a whole undefined microbial community from a healthy gut to an ill one, e.g., so-called fecal microbiota transplantation or vaginal seeding, to the administration of selected well-characterized microbes, either live (probiotics) or not (postbiotics), with efficacy demonstrated in clinical trials, may be effective tools to treat or prevent acute and chronic diseases that humans still face, enhancing the quality of life.


Assuntos
Microbioma Gastrointestinal , Microbiota , Probióticos , Suplementos Nutricionais , Feminino , Humanos , Qualidade de Vida
4.
Front Microbiol ; 11: 586716, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363520

RESUMO

We aimed at isolating lactic acid bacteria (LAB) from different plant materials to study their crossed-fermentation capacity in silos and to find strains able to confer enhanced aerobic stability to silage. A total of 129 LAB isolates were obtained from lucerne (alfalfa), maize, sorghum, ryegrass, rice, barley, canola, Gatton panic, Melilotus albus, soy, white clover, wheat, sunflower, oat, and moha. Four Lactiplantibacillus plantarum subsp. plantarum strains (isolated from oat, lucerne, sorghum, or maize) were selected for their growth capacity. Identity (16S sequencing) and diversity (RAPD-PCR) were confirmed. Fermentative capacity (inoculated at 104, 105, 106, 107 CFU/g) was studied in maize silage and their cross-fermentation capacity was assessed in oat, lucerne, sorghum, and maize. Heterofermentative strains with the highest acetic acid production capacity conferred higher aerobic stability to maize silages. Regardless the source of isolation, L. plantarum strains, inoculated at a rate of 106 CFU/g, were effective to produce silage from different plant materials. From more than 100 isolates obtained, the application of a succession of experiments allowed us to narrow down the number of potential candidates of silage inoculants to two strains. Based on the studies made, L. plantarum LpM15 and Limosilactobacillus fermentum LfM1 showed potential to be used as inoculants, however further studies are needed to determine their performance when inoculated together. The former because it positively influenced different quality parameters in oat, lucerne, sorghum, and maize silage, and the latter because of its capacity to confer enhanced aerobic stability to maize silage. The rest of the strains constitute a valuable collection of autochthonous strains that will be further studied in the future for new applications in animal or human foods.

5.
Front Microbiol ; 9: 2861, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555432

RESUMO

The aim of this study was to isolate, identify and characterize lactic acid bacteria (LAB) from spontaneously fermented maize silage, and evaluate their performance as spray-dried (SD) cultures to enhance the fermentation and the aerobic stability of maize micro-silos. Eleven strains of LAB were characterized for growth kinetics, the capability to grow in vegetable-based medium (VBM), production of organic acids and the ability to tolerate heat-stress. Three strains (Lactobacillus plantarum Ls71, Pediococcus acidilactici Ls72, and Lactobacillus buchneri Ls141) were selected and further characterized for the ability to grow as single strain or in co-culture in MRS and VMB medium, to survive at freeze and spray-drying process, for their performance as SD bacteria in micro-silos and for the aerobic stability in bucket silos. L. buchneri Ls141 showed the highest growth capability in VBM and produced the highest amount of acetic acid, while L. plantarum Ls71 produced the highest amounts of lactic acid. P. acidilactici Ls72 was the most heat-resistant strain, with a reduction of 0.2 log10 CFU/mL (15 min at 55°C). The three strains satisfactorily tolerated both spray and freeze-drying. After 4 days of fermentation, all the samples reached a pH value of about 3.7-3.8. A significantly lower cell load of filamentous fungi and yeasts (< 3 log10 CFU/g) and a higher concentration of total LAB (> 8.7 log10 CFU/g) was observed after 30 days of fermentation. A greater amount of acetic acid, crude protein, ash and ammonia nitrogen/total nitrogen was detected in inoculated silages. A significant reduction of filamentous fungi and yeasts was also observed in inoculated bucket silos after 50 d of fermentation. The aerobic stability was significantly improved in inoculated silage since the temperature remained stable after 16 days (384 h). On the contrary, an increase of 5°C was observed in control samples after 1 day. The selected strains have the potential to be produced as SD silage inoculant as they were able to accelerate the fermentation process, to control filamentous fungi and yeasts, to improve some nutritional and chemical parameters of silage and to improve aerobic stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...