Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 206: 81-88, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36252889

RESUMO

SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) is the key enzyme required for viral replication and mRNA synthesis. RdRp is one of the most conserved viral proteins and a promising target for antiviral drugs and inhibitors. At the same time, analysis of public databases reveals multiple variants of SARS-CoV-2 genomes with substitutions in the catalytic RdRp subunit nsp12. Structural mapping of these mutations suggests that some of them may affect the interactions of nsp12 with its cofactors nsp7/nsp8 as well as with RNA substrates. We have obtained several mutations of these types and demonstrated that some of them decrease specific activity of RdRp in vitro, possibly by changing RdRp assembly and/or its interactions with RNA. Therefore, natural polymorphisms in RdRp may potentially affect viral replication. Furthermore, we have synthesized a series of polyphenol and diketoacid derivatives based on previously studied inhibitors of hepatitis C virus RdRp and found that several of them can inhibit SARS-CoV-2 RdRp. Tested mutations in RdRp do not have strong effects on the efficiency of inhibition. Further development of more efficient non-nucleoside inhibitors of SARS-CoV-2 RdRp should take into account the existence of multiple polymorphic variants of RdRp.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , COVID-19/genética , Proteínas não Estruturais Virais/química , Antivirais/química
2.
RNA Biol ; 18(11): 2028-2037, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33573428

RESUMO

The bacterial σ factor plays the central role in promoter recognition by RNA polymerase (RNAP). The primary σ factor, involved in transcription of housekeeping genes, was also shown to participate in the initiation of RNA synthesis and promoter escape by RNAP. In the open promoter complex, the σ finger formed by σ region 3.2 directly interacts with the template DNA strand upstream of the transcription start site. Here, we analysed the role of the σ finger in transcription initiation by four alternative σ factors in Escherichia coli, σ38, σ32, σ28 and σ24. We found that deletions of the σ finger to various extent compromise the activity of RNAP holoenzymes containing alternative σ factors, especially at low NTP concentrations. All four σs are able to utilize NADH as a noncanonical priming substrate but it has only mild effects on the efficiency of transcription initiation. The mediators of the stringent response, transcription factor DksA and the alarmone ppGpp decrease RNAP activity and promoter complex stability for all four σ factors on tested promoters. For all σs except σ38, deletions of the σ finger conversely increase the stability of promoter complexes and decrease their sensitivity to DksA and ppGpp. The result suggests that the σ finger plays a universal role in transcription initiation by alternative σ factors and sensitizes promoter complexes to the action of global transcription regulators DksA and ppGpp by modulating promoter complex stability.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/metabolismo , Fator sigma/metabolismo , Sítio de Iniciação de Transcrição , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Guanosina Tetrafosfato/genética , Guanosina Tetrafosfato/metabolismo , Regiões Promotoras Genéticas , RNA Bacteriano/genética , Fator sigma/genética , Transcrição Gênica
3.
Nat Commun ; 12(1): 528, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483500

RESUMO

Ribosomal RNA (rRNA) is most highly expressed in rapidly growing bacteria and is drastically downregulated under stress conditions by the global transcriptional regulator DksA and the alarmone ppGpp. Here, we determined cryo-electron microscopy structures of the Escherichia coli RNA polymerase (RNAP) σ70 holoenzyme during rRNA promoter recognition with and without DksA/ppGpp. RNAP contacts the UP element using dimerized α subunit carboxyl-terminal domains and scrunches the template DNA with the σ finger and ß' lid to select the transcription start site favorable for rapid promoter escape. Promoter binding induces conformational change of σ domain 2 that opens a gate for DNA loading and ejects σ1.1 from the RNAP cleft to facilitate open complex formation. DksA/ppGpp binding also opens the DNA loading gate, which is not coupled to σ1.1 ejection and impedes open complex formation. These results provide a molecular basis for the exceptionally active rRNA transcription and its vulnerability to DksA/ppGpp.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas/genética , RNA Ribossômico/genética , Transcrição Gênica , Microscopia Crioeletrônica , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/ultraestrutura , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Tetrafosfato/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , Holoenzimas/ultraestrutura , Conformação Proteica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico/metabolismo , Fator sigma/química , Fator sigma/metabolismo , Fator sigma/ultraestrutura , Sítio de Iniciação de Transcrição
4.
Nucleic Acids Res ; 48(19): 10802-10819, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32997144

RESUMO

In bacteria, rapid adaptation to changing environmental conditions depends on the interplay between housekeeping and alternative σ factors, responsible for transcription of specific regulons by RNA polymerase (RNAP). In comparison with alternative σ factors, primary σs contain poorly conserved region 1.1, whose functions in transcription are only partially understood. We found that a single mutation in region 1.1 in Escherichia coli σ70 rewires transcription regulation during cell growth resulting in profound phenotypic changes. Despite its destabilizing effect on promoter complexes, this mutation increases the activity of rRNA promoters and also decreases RNAP sensitivity to the major regulator of stringent response DksA. Using total RNA sequencing combined with single-cell analysis of gene expression we showed that changes in region 1.1 disrupt the balance between the "greed" and "fear" strategies thus making the cells more susceptible to environmental threats and antibiotics. Our results reveal an unexpected role of σ region 1.1 in growth-dependent transcription regulation and suggest that changes in this region may facilitate rapid switching of RNAP properties in evolving bacterial populations.


Assuntos
Divisão Celular , Regulação Bacteriana da Expressão Gênica , Fator sigma/genética , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação Puntual , Domínios Proteicos , Fator sigma/química , Fator sigma/metabolismo , Transcrição Gênica
5.
Biochem Biophys Res Commun ; 510(1): 122-127, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30665719

RESUMO

DNA lesions can severely compromise genome stability and lead to cell death if unrepaired. RNA polymerase (RNAP) is known to serve as a sensor of DNA damage and to attract DNA repair factors to the damaged template sites. Here, we systematically investigated the ability of Escherichia coli RNAP to transcribe DNA templates containing various types of DNA lesions, and analyzed their effects on transcription fidelity. We showed that transcription is strongly inhibited on templates containing cyclobutane thymine dimers, 1,N6-ethenoadenine and abasic sites, while 8-oxoguanine and thymine glycol have mild effects on transcription efficiency. Similarly to many polymerases, E. coli RNAP follows the "A" rule during nucleotide insertion opposite abasic sites and bulky lesions, and can also incorporate and efficiently extend an adenine nucleotide opposite 8-oxoguanine. Mutations in RNAP regions around the templating nucleotide decrease the efficiency of translesion synthesis, likely by altering the RNAP-template contacts in the active site. Thus, DNA lesions can lead to distinct outcomes in transcription, depending on the severity of the damage and contacts of the damaged template with the active site of RNAP.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , DNA/química , Escherichia coli/genética , RNA/biossíntese , Dano ao DNA , Reparo do DNA , Guanina/análogos & derivados , Dímeros de Pirimidina , Transcrição Gênica
6.
FEBS Lett ; 593(3): 361-368, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30536890

RESUMO

Bacterial RNA polymerase (RNAP) serves as a primase during replication of single-stranded plasmids and filamentous phages. Primer RNA (prRNA) synthesis from the origin regions of these replicons depends on the σ factor that normally participates in promoter recognition. However, it was proposed that σ may not be required for origin recognition but is rather involved in RNA extension by RNAP. Here, by analyzing the natural replication origin of bacteriophage M13 and synthetic ssDNA templates, we show that interactions of σ with promoter-like motifs stabilize priming complexes and can control prRNA synthesis by trapping RNAP on the template. Thus, the σ factor is involved in both DNA recognition and RNA priming, unifying its functions in transcription initiation from double- and single-stranded templates.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Regiões Promotoras Genéticas , RNA Bacteriano/biossíntese , RNA/biossíntese , Fator sigma/química , Bacteriófago M13/química , Bacteriófago M13/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , DNA Viral/química , DNA Viral/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , RNA/química , Fator sigma/metabolismo
7.
Nucleic Acids Res ; 46(21): 11477-11487, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30321408

RESUMO

The σ factor drives promoter recognition by bacterial RNA polymerase (RNAP) and is also essential for later steps of transcription initiation, including RNA priming and promoter escape. Conserved region 3.2 of the primary σ factor ('σ finger') directly contacts the template DNA strand in the open promoter complex and facilitates initiating NTP binding in the active center of RNAP. Ribosomal RNA promoters are responsible for most RNA synthesis during exponential growth but should be silenced during the stationary phase to save cell resources. In Escherichia coli, the silencing mainly results from the action of the secondary channel factor DksA, which together with ppGpp binds RNAP and dramatically decreases the stability of intrinsically unstable rRNA promoter complexes. We demonstrate that this switch depends on the σ finger that destabilizes RNAP-promoter interactions. Mutations in the σ finger moderately decrease initiating NTP binding but significantly increase promoter complex stability and reduce DksA affinity to the RNAP-rRNA promoter complex, thus making rRNA transcription less sensitive to DksA/ppGpp both in vitro and in vivo. Thus, destabilization of rRNA promoter complexes by the σ finger makes them a target for robust regulation by the stringent response factors under stress conditions.


Assuntos
Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , RNA Ribossômico/genética , Fator sigma/genética , Sítios de Ligação , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Inativação Gênica , Conformação Molecular , Mutação , RNA Bacteriano/metabolismo , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo
8.
Biochem J ; 474(24): 4053-4064, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29101286

RESUMO

In bacterial RNA polymerase (RNAP), conserved region 3.2 of the σ subunit was proposed to contribute to promoter escape by interacting with the 5'-end of nascent RNA, thus facilitating σ dissociation. RNAP activity during transcription initiation can also be modulated by protein factors that bind within the secondary channel and reach the enzyme active site. To monitor the kinetics of promoter escape in real time, we used a molecular beacon assay with fluorescently labeled σ70 subunit of Escherichia coli RNAP. We show that substitutions and deletions in σ region 3.2 decrease the rate of promoter escape and lead to accumulation of inactive complexes during transcription initiation. Secondary channel factors differentially regulate this process depending on the promoter and mutations in σ region 3.2. GreA generally increase the rate of promoter escape; DksA also stimulates promoter escape on certain templates, while GreB either stimulates or inhibits this process depending on the template. When observed, the stimulation of promoter escape correlates with the accumulation of stressed transcription complexes with scrunched DNA, while changes in the RNA 5'-end structure modulate promoter clearance. Thus, the initiation-to-elongation transition is controlled by a complex interplay between RNAP-binding protein factors and the growing RNA chain.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fator sigma/metabolismo , Elongação da Transcrição Genética/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutação , Estrutura Secundária de Proteína , Fator sigma/genética , Fatores de Transcrição/genética , Fatores de Elongação da Transcrição/genética
9.
Biochem J ; 473(23): 4493-4505, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27754888

RESUMO

Transcription factors of the Gre family bind within the secondary channel of bacterial RNA polymerase (RNAP) directly modulating its catalytic activities. Universally conserved Gre factors activate RNA cleavage by RNAP, by chelating catalytic metal ions in the RNAP active site, and facilitate both promoter escape and transcription elongation. Gfh factors are Deinococcus/Thermus-specific homologues of Gre factors whose transcription functions remain poorly understood. Recently, we found that Gfh1 and Gfh2 proteins from Deinococcus radiodurans dramatically stimulate RNAP pausing during transcription elongation in the presence of Mn2+, but not Mg2+, ions. In contrast, we show that Gfh1 and Gfh2 moderately inhibit transcription initiation in the presence of either Mg2+ or Mn2+ ions. By using a molecular beacon assay, we demonstrate that Gfh1 and Gfh2 do not significantly change promoter complex stability or the rate of promoter escape by D. radiodurans RNAP. At the same time, Gfh factors significantly increase the apparent KM value for the 5'-initiating nucleotide, without having major effects on the affinity of metal ions for the RNAP active site. Similar inhibitory effects of Gfh factors are observed for transcription initiation on promoters recognized by the principal and an alternative σ factor. In summary, our data suggest that D. radiodurans Gfh factors impair the binding of initiating substrates independently of the metal ions bound in the RNAP active site, but have only mild overall effects on transcription initiation. Thus the mechanisms of modulation of RNAP activity by these factors are different for various steps of transcription.


Assuntos
Proteínas de Bactérias/metabolismo , Deinococcus/genética , Deinococcus/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dados de Sequência Molecular , Estrutura Secundária de Proteína , RNA Bacteriano/genética , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Fatores de Transcrição/genética
10.
Nucleic Acids Res ; 44(3): 1298-308, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26733581

RESUMO

RNA cleavage by bacterial RNA polymerase (RNAP) has been implicated in transcriptional proofreading and reactivation of arrested transcription elongation complexes but its molecular mechanism is less understood than the mechanism of nucleotide addition, despite both reactions taking place in the same active site. RNAP from the radioresistant bacterium Deinococcus radiodurans is characterized by highly efficient intrinsic RNA cleavage in comparison with Escherichia coli RNAP. We find that the enhanced RNA cleavage activity largely derives from amino acid substitutions in the trigger loop (TL), a mobile element of the active site involved in various RNAP activities. The differences in RNA cleavage between these RNAPs disappear when the TL is deleted, or in the presence of GreA cleavage factors, which replace the TL in the active site. We propose that the TL substitutions modulate the RNA cleavage activity by altering the TL folding and its contacts with substrate RNA and that the resulting differences in transcriptional proofreading may play a role in bacterial stress adaptation.


Assuntos
Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Clivagem do RNA , RNA Bacteriano/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Domínio Catalítico/genética , RNA Polimerases Dirigidas por DNA/classificação , RNA Polimerases Dirigidas por DNA/genética , Deinococcus/enzimologia , Deinococcus/genética , Deinococcus/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Variação Genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Nucleotídeos/genética , Nucleotídeos/metabolismo , Filogenia , Estrutura Terciária de Proteína , RNA Bacteriano/genética , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
11.
Nucleic Acids Res ; 43(12): 5798-809, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-25990734

RESUMO

During transcription, the catalytic core of RNA polymerase (RNAP) must interact with the DNA template with low-sequence specificity to ensure efficient enzyme translocation and RNA extension. Unexpectedly, recent structural studies of bacterial promoter complexes revealed specific interactions between the nontemplate DNA strand at the downstream edge of the transcription bubble (CRE, core recognition element) and a protein pocket formed by core RNAP (CRE pocket). We investigated the roles of these interactions in transcription by analyzing point amino acid substitutions and deletions in Escherichia coli RNAP. The mutations affected multiple steps of transcription, including promoter recognition, RNA elongation and termination. In particular, we showed that interactions of the CRE pocket with a nontemplate guanine immediately downstream of the active center stimulate RNA-hairpin-dependent transcription pausing but not other types of pausing. Thus, conformational changes of the elongation complex induced by nascent RNA can modulate CRE effects on transcription. The results highlight the roles of specific core RNAP-DNA interactions at different steps of RNA synthesis and suggest their importance for transcription regulation in various organisms.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Regiões Promotoras Genéticas , Transcrição Gênica , DNA Bacteriano/química , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Mutação , Ligação Proteica , RNA/química , Elongação da Transcrição Genética , Terminação da Transcrição Genética
12.
Methods Mol Biol ; 1276: 165-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25665563

RESUMO

Bacterial RNA polymerase (RNAP) is the main regulatory hub of gene transcription. During transcription, RNAP interacts with the DNA template, RNA product, nucleotide substrates, metal cofactors, and regulatory molecules that bind to distinct RNAP sites to modulate its activity. RNAP is also inhibited by several known antibiotics and is a promising target for development of novel antibacterial compounds. Despite great progress in structural analysis of RNAP in recent years, many details of RNAP interactions with nucleic acids, regulatory molecules and antibiotics remain insufficiently understood. Aptamers that target various epitopes on the RNAP molecule represent a useful tool for functional analysis of transcription. Here, we describe protocols for selection of highly specific aptamers to different components of RNAP and their applications for analysis of RNAP-ligand interactions and RNAP inhibition.


Assuntos
Aptâmeros de Nucleotídeos/genética , Bactérias/enzimologia , DNA de Cadeia Simples/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Técnicas de Sonda Molecular , Sondas Moleculares/genética , Pareamento de Bases , Sequência de Bases , Dados de Sequência Molecular , Estrutura Molecular
13.
J Biol Chem ; 289(35): 24549-59, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-24973216

RESUMO

The bacterial RNA polymerase (RNAP) holoenzyme containing σ factor initiates transcription at specific promoter sites by de novo RNA priming, the first step of RNA synthesis where RNAP accepts two initiating ribonucleoside triphosphates (iNTPs) and performs the first phosphodiester bond formation. We present the structure of de novo transcription initiation complex that reveals unique contacts of the iNTPs bound at the transcription start site with the template DNA and also with RNAP and demonstrate the importance of these contacts for transcription initiation. To get further insight into the mechanism of RNA priming, we determined the structure of initially transcribing complex of RNAP holoenzyme with 6-mer RNA, obtained by in crystallo transcription approach. The structure highlights RNAP-RNA contacts that stabilize the short RNA transcript in the active site and demonstrates that the RNA 5'-end displaces σ region 3.2 from its position near the active site, which likely plays a key role in σ ejection during the initiation-to-elongation transition. Given the structural conservation of the RNAP active site, the mechanism of de novo RNA priming appears to be conserved in all cellular RNAPs.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Sítio de Iniciação de Transcrição , Sequência de Bases , Sítios de Ligação , Cristalização , Cristalografia por Raios X , DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA/química , Modelos Moleculares , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Homologia de Sequência do Ácido Nucleico , Thermus thermophilus/enzimologia
14.
Nucleic Acids Res ; 42(7): 4494-504, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24452800

RESUMO

The σ subunit of bacterial RNA polymerase (RNAP) has been implicated in all steps of transcription initiation, including promoter recognition and opening, priming of RNA synthesis, abortive initiation and promoter escape. The post-promoter-recognition σ functions were proposed to depend on its conserved region σ3.2 that directly contacts promoter DNA immediately upstream of the RNAP active centre and occupies the RNA exit path. Analysis of the transcription effects of substitutions and deletions in this region in Escherichia coli σ(70) subunit, performed in this work, suggests that (i) individual residues in the σ3.2 finger collectively contribute to RNA priming by RNAP, likely by the positioning of the template DNA strand in the active centre, but are not critical to promoter escape; (ii) the physical presence of σ3.2 in the RNA exit channel is important for promoter escape; (iii) σ3.2 promotes σ dissociation during initiation and suppresses σ-dependent promoter-proximal pausing; (iv) σ3.2 contributes to allosteric inhibition of the initiating NTP binding by rifamycins. Thus, region σ3.2 performs distinct functions in transcription initiation and its inhibition by antibiotics. The B-reader element of eukaryotic factor TFIIB likely plays similar roles in RNAPII transcription, revealing common principles in transcription initiation in various domains of life.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Regiões Promotoras Genéticas , Fator sigma/química , Iniciação da Transcrição Genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Mutação , RNA/metabolismo , Ribonucleotídeos/metabolismo , Rifamicinas/farmacologia , Fator sigma/genética , Fator sigma/metabolismo , Iniciação da Transcrição Genética/efeitos dos fármacos
15.
Biochem J ; 452(2): 241-8, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23517087

RESUMO

Besides canonical double-strand DNA promoters, multisubunit RNAPs (RNA polymerases) recognize a number of specific single-strand DNA and RNA templates, resulting in synthesis of various types of RNA transcripts. The general recognition principles and the mechanisms of transcription initiation on these templates are not fully understood. To investigate further the molecular mechanisms underlying the transcription of single-strand templates by bacterial RNAP, we selected high-affinity single-strand DNA aptamers that are specifically bound by RNAP holoenzyme, and characterized a novel class of aptamer-based transcription templates. The aptamer templates have a hairpin structure that mimics the upstream part of the open promoter bubble with accordingly placed specific promoter elements. The affinity of the RNAP holoenzyme to such DNA structures probably underlies its promoter-melting activity. Depending on the template structure, the aptamer templates can direct synthesis of productive RNA transcripts or effectively trap RNAP in the process of abortive synthesis, involving DNA scrunching, and competitively inhibit promoter recognition. The aptamer templates provide a novel tool for structure-function studies of transcription initiation by bacterial RNAP and its inhibition.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Proteínas de Escherichia coli/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Regiões Promotoras Genéticas , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , RNA Polimerases Dirigidas por DNA/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , RNA Bacteriano/química , RNA Bacteriano/genética , Fator sigma/química , Fator sigma/genética , Transcrição Gênica
16.
J Biol Chem ; 287(28): 23779-89, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22605342

RESUMO

RNA polymerase (RNAP) from thermophilic Thermus aquaticus is characterized by higher temperature of promoter opening, lower promoter complex stability, and higher promoter escape efficiency than RNAP from mesophilic Escherichia coli. We demonstrate that these differences are in part explained by differences in the structures of the N-terminal regions 1.1 and 1.2 of the E. coli σ(70) and T. aquaticus σ(A) subunits. In particular, region 1.1 and, to a lesser extent, region 1.2 of the E. coli σ(70) subunit determine higher promoter complex stability of E. coli RNAP. On the other hand, nonconserved amino acid substitutions in region 1.2, but not region 1.1, contribute to the differences in promoter opening between E. coli and T. aquaticus RNAPs, likely through affecting the σ subunit contacts with DNA nucleotides downstream of the -10 element. At the same time, substitutions in σ regions 1.1 and 1.2 do not affect promoter escape by E. coli and T. aquaticus RNAPs. Thus, evolutionary substitutions in various regions of the σ subunit modulate different steps of the open promoter complex formation pathway, with regions 1.1 and 1.2 affecting promoter complex stability and region 1.2 involved in DNA melting during initiation.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Fator sigma/genética , Thermus/genética , Transcrição Gênica , Sequência de Aminoácidos , Temperatura Baixa , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Homologia de Sequência de Aminoácidos , Fator sigma/metabolismo , Especificidade da Espécie , Thermus/enzimologia
17.
Nucleic Acids Res ; 38(17): 5784-96, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20457751

RESUMO

Interactions of RNA polymerase (RNAP) with nucleic acids must be tightly controlled to ensure precise and processive RNA synthesis. The RNAP ß'-subunit Switch-2 (SW2) region is part of a protein network that connects the clamp domain with the RNAP body and mediates opening and closing of the active center cleft. SW2 interacts with the template DNA near the RNAP active center and is a target for antibiotics that block DNA melting during initiation. Here, we show that substitutions of a conserved Arg339 residue in the Escherichia coli RNAP SW2 confer diverse effects on transcription that include defects in DNA melting in promoter complexes, decreased stability of RNAP/promoter complexes, increased apparent K(M) for initiating nucleotide substrates (2- to 13-fold for different substitutions), decreased efficiency of promoter escape, and decreased stability of elongation complexes. We propose that interactions of Arg339 with DNA directly stabilize transcription complexes to promote stable closure of the clamp domain around nucleic acids. During initiation, SW2 may cooperate with the σ(3.2) region to stabilize the template DNA strand in the RNAP active site. Together, our data suggest that SW2 may serve as a key regulatory element that affects transcription initiation and RNAP processivity through controlling RNAP/DNA template interactions.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Regiões Promotoras Genéticas , Transcrição Gênica , Substituição de Aminoácidos , Primers do DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , RNA/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA