Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 5(1): 102817, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38183655

RESUMO

Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) is the end product of the hexosamine biosynthetic pathway and the substrate for protein O-linked N-acetylglucosaminylation (O-GlcNAcylation). Here, we present a protocol for the quantification of UDP-GlcNAc using an enzymatic microplate assay. We also detail procedures for the extraction of polar metabolites and total protein fraction for the parallel quantification of UDP-GlcNAc and the western blot analysis of O-GlcNAcylated proteins, O-linked N-acetylglucosamine transferase, and O-GlcNAcase from the same sample. For complete details on the use and execution of this protocol, please refer to Sunden et al. (2023).1 In addition, a preview article by Chatham et al. provides a useful summary of the method.2.


Assuntos
Proteínas , Difosfato de Uridina
2.
Nucleic Acids Res ; 52(1): e6, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38008466

RESUMO

Enzymatic methods to quantify deoxyribonucleoside triphosphates have existed for decades. In contrast, no general enzymatic method to quantify ribonucleoside triphosphates (rNTPs), which drive almost all cellular processes and serve as precursors of RNA, exists to date. ATP can be measured with an enzymatic luminometric method employing firefly luciferase, but the quantification of other ribonucleoside mono-, di-, and triphosphates is still a challenge for a non-specialized laboratory and practically impossible without chromatography equipment. To allow feasible quantification of ribonucleoside phosphates in any laboratory with typical molecular biology and biochemistry tools, we developed a robust microplate assay based on real-time detection of the Broccoli RNA aptamer during in vitro transcription. The assay employs the bacteriophage T7 and SP6 RNA polymerases, two oligonucleotide templates encoding the 49-nucleotide Broccoli aptamer, and a high-affinity fluorogenic aptamer-binding dye to quantify each of the four canonical rNTPs. The inclusion of nucleoside mono- and diphosphate kinases in the assay reactions enabled the quantification of the mono- and diphosphate counterparts. The assay is inherently specific and tolerates concentrated tissue and cell extracts. In summary, we describe the first chromatography-free method to quantify ATP, ADP, AMP, GTP, GDP, GMP, UTP, UDP, UMP, CTP, CDP and CMP in biological samples.


Assuntos
Bioquímica , Ribonucleotídeos , Difosfatos , Nucleotídeos/química , Ribonucleotídeos/análise , Bioquímica/métodos
3.
Front Cell Dev Biol ; 11: 1257651, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731815

RESUMO

The mitochondrion is a major hub of cellular metabolism and involved directly or indirectly in almost all biological processes of the cell. In mitochondrial diseases, compromised respiratory electron transfer and oxidative phosphorylation (OXPHOS) lead to compensatory rewiring of metabolism with resemblance to the Warburg-like metabolic state of cancer cells. The transcription factor MYC (or c-MYC) is a major regulator of metabolic rewiring in cancer, stimulating glycolysis, nucleotide biosynthesis, and glutamine utilization, which are known or predicted to be affected also in mitochondrial diseases. Albeit not widely acknowledged thus far, several cell and mouse models of mitochondrial disease show upregulation of MYC and/or its typical transcriptional signatures. Moreover, gene expression and metabolite-level changes associated with mitochondrial integrated stress response (mt-ISR) show remarkable overlap with those of MYC overexpression. In addition to being a metabolic regulator, MYC promotes cellular proliferation and modifies the cell cycle kinetics and, especially at high expression levels, promotes replication stress and genomic instability, and sensitizes cells to apoptosis. Because cell proliferation requires energy and doubling of the cellular biomass, replicating cells should be particularly sensitive to defective OXPHOS. On the other hand, OXPHOS-defective replicating cells are predicted to be especially vulnerable to high levels of MYC as it facilitates evasion of metabolic checkpoints and accelerates cell cycle progression. Indeed, a few recent studies demonstrate cell cycle defects and nuclear DNA damage in OXPHOS deficiency. Here, we give an overview of key mitochondria-dependent metabolic pathways known to be regulated by MYC, review the current literature on MYC expression in mitochondrial diseases, and speculate how its upregulation may be triggered by OXPHOS deficiency and what implications this has for the pathogenesis of these diseases.

4.
Cell Rep Methods ; 3(7): 100518, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37533645

RESUMO

O-linked N-acetylglucosaminylation (O-GlcNAcylation) is a ubiquitous and dynamic non-canonical glycosylation of intracellular proteins. Several branches of metabolism converge at the hexosamine biosynthetic pathway (HBP) to produce the substrate for protein O-GlcNAcylation, the uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). Availability of UDP-GlcNAc is considered a key regulator of O-GlcNAcylation. Yet UDP-GlcNAc concentrations are rarely reported in studies exploring the HBP and O-GlcNAcylation, most likely because the methods to measure it are restricted to specialized chromatographic procedures. Here, we introduce an enzymatic method to quantify cellular and tissue UDP-GlcNAc. The method is based on O-GlcNAcylation of a substrate peptide by O-linked N-acetylglucosamine transferase (OGT) and subsequent immunodetection of the modification. The assay can be performed in dot-blot or microplate format. We apply it to quantify UDP-GlcNAc concentrations in several mouse tissues and cell lines. Furthermore, we show how changes in UDP-GlcNAc levels correlate with O-GlcNAcylation and the expression of OGT and O-GlcNAcase (OGA).


Assuntos
Ensaios Enzimáticos , Proteínas , Camundongos , Animais , Glicosilação , Difosfato de Uridina
5.
Nat Commun ; 14(1): 2356, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095097

RESUMO

Accumulating evidence suggests mitochondria as key modulators of normal and premature aging, yet whether primary oxidative phosphorylation (OXPHOS) deficiency can cause progeroid disease remains unclear. Here, we show that mice with severe isolated respiratory complex III (CIII) deficiency display nuclear DNA damage, cell cycle arrest, aberrant mitoses, and cellular senescence in the affected organs such as liver and kidney, and a systemic phenotype resembling juvenile-onset progeroid syndromes. Mechanistically, CIII deficiency triggers presymptomatic cancer-like c-MYC upregulation followed by excessive anabolic metabolism and illicit cell proliferation against lack of energy and biosynthetic precursors. Transgenic alternative oxidase dampens mitochondrial integrated stress response and the c-MYC induction, suppresses the illicit proliferation, and prevents juvenile lethality despite that canonical OXPHOS-linked functions remain uncorrected. Inhibition of c-MYC with the dominant-negative Omomyc protein relieves the DNA damage in CIII-deficient hepatocytes in vivo. Our results connect primary OXPHOS deficiency to genomic instability and progeroid pathogenesis and suggest that targeting c-MYC and aberrant cell proliferation may be therapeutic in mitochondrial diseases.


Assuntos
Doenças Mitocondriais , Progéria , Camundongos , Animais , Progéria/patologia , Complexo III da Cadeia de Transporte de Elétrons , Senescência Celular/genética , Ciclo Celular
6.
FEBS J ; 289(22): 6936-6958, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34428349

RESUMO

Coenzyme Q (CoQ, ubiquinone) is the electron-carrying lipid in the mitochondrial electron transport system (ETS). In mammals, it serves as the electron acceptor for nine mitochondrial inner membrane dehydrogenases. These include the NADH dehydrogenase (complex I, CI) and succinate dehydrogenase (complex II, CII) but also several others that are often omitted in the context of respiratory enzymes: dihydroorotate dehydrogenase, choline dehydrogenase, electron-transferring flavoprotein dehydrogenase, mitochondrial glycerol-3-phosphate dehydrogenase, proline dehydrogenases 1 and 2, and sulfide:quinone oxidoreductase. The metabolic pathways these enzymes are involved in range from amino acid and fatty acid oxidation to nucleotide biosynthesis, methylation, and hydrogen sulfide detoxification, among many others. The CoQ-linked metabolism depends on CoQ reoxidation by the mitochondrial complex III (cytochrome bc1 complex, CIII). However, the literature is surprisingly limited as for the role of the CoQ-linked metabolism in the pathogenesis of human diseases of oxidative phosphorylation (OXPHOS), in which the CoQ homeostasis is directly or indirectly affected. In this review, we give an introduction to CIII function, and an overview of the pathological consequences of CIII dysfunction in humans and mice and of the CoQ-dependent metabolic processes potentially affected in these pathological states. Finally, we discuss some experimental tools to dissect the various aspects of compromised CoQ oxidation.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons , Ubiquinona , Humanos , Camundongos , Animais , Membranas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Mamíferos/metabolismo
7.
Nucleic Acids Res ; 48(15): e87, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32573728

RESUMO

Deoxyribonucleoside triphosphates (dNTPs) are vital for the biosynthesis and repair of DNA. Their cellular concentration peaks during the S phase of the cell cycle. In non-proliferating cells, dNTP concentrations are low, making their reliable quantification from tissue samples of heterogeneous cellular composition challenging. Partly because of this, the current knowledge related to the regulation of and disturbances in cellular dNTP concentrations derive mostly from cell culture experiments with little corroboration at the tissue or organismal level. Here, we fill the methodological gap by presenting a simple non-radioactive microplate assay for the quantification of dNTPs with a minimum requirement of 4-12 mg of biopsy material. In contrast to published assays, this assay is based on long synthetic single-stranded DNA templates (50-200 nucleotides), an inhibitor-resistant high-fidelity DNA polymerase, and the double-stranded-DNA-binding EvaGreen dye. The assay quantified reliably less than 50 fmol of each of the four dNTPs and discriminated well against ribonucleotides. Additionally, thermostable RNAse HII-mediated nicking of the reaction products and a subsequent shift in their melting temperature allowed near-complete elimination of the interfering ribonucleotide signal, if present. Importantly, the assay allowed measurement of minute dNTP concentrations in mouse liver, heart and skeletal muscle.


Assuntos
DNA Polimerase Dirigida por DNA/genética , Desoxirribonucleotídeos/isolamento & purificação , Oligonucleotídeos/genética , Animais , DNA de Cadeia Simples/genética , DNA Polimerase Dirigida por DNA/química , Desoxirribonucleotídeos/genética , Camundongos , Inibidores da Síntese de Ácido Nucleico/química , Oligonucleotídeos/síntese química , Ribonuclease H/genética
8.
Nat Commun ; 11(1): 322, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949167

RESUMO

We previously observed an unexpected fivefold (35 vs. 200 days) difference in the survival of respiratory chain complex III (CIII) deficient Bcs1lp.S78G mice between two congenic backgrounds. Here, we identify a spontaneous homoplasmic mtDNA variant (m.G14904A, mt-Cybp.D254N), affecting the CIII subunit cytochrome b (MT-CYB), in the background with short survival. We utilize maternal inheritance of mtDNA to confirm this as the causative variant and show that it further decreases the low CIII activity in Bcs1lp.S78G tissues to below survival threshold by 35 days of age. Molecular dynamics simulations predict D254N to restrict the flexibility of MT-CYB ef loop, potentially affecting RISP dynamics. In Rhodobacter cytochrome bc1 complex the equivalent substitution causes a kinetics defect with longer occupancy of RISP head domain towards the quinol oxidation site. These findings represent a unique case of spontaneous mitonuclear epistasis and highlight the role of mtDNA variation as modifier of mitochondrial disease phenotypes.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Epistasia Genética/genética , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Mitocôndrias/genética , Doenças Mitocondriais/genética , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Grupo dos Citocromos b/química , Grupo dos Citocromos b/genética , Citocromos b , DNA Mitocondrial , Complexo III da Cadeia de Transporte de Elétrons/química , Metabolismo Energético , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Simulação de Dinâmica Molecular , Oxirredução
9.
EMBO Mol Med ; 11(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30530468

RESUMO

Alternative oxidase (AOX) is a non-mammalian enzyme that can bypass blockade of the complex III-IV segment of the respiratory chain (RC). We crossed a Ciona intestinalis AOX transgene into RC complex III (cIII)-deficient Bcs1lp.S78G knock-in mice, displaying multiple visceral manifestations and premature death. The homozygotes expressing AOX were viable, and their median survival was extended from 210 to 590 days due to permanent prevention of lethal cardiomyopathy. AOX also prevented renal tubular atrophy and cerebral astrogliosis, but not liver disease, growth restriction, or lipodystrophy, suggesting distinct tissue-specific pathogenetic mechanisms. Assessment of reactive oxygen species (ROS) production and damage suggested that ROS were not instrumental in the rescue. Cardiac mitochondrial ultrastructure, mitochondrial respiration, and pathological transcriptome and metabolome alterations were essentially normalized by AOX, showing that the restored electron flow upstream of cIII was sufficient to prevent cardiac energetic crisis and detrimental decompensation. These findings demonstrate the value of AOX, both as a mechanistic tool and a potential therapeutic strategy, for cIII deficiencies.


Assuntos
Cardiomiopatias/prevenção & controle , Respiração Celular , Complexo III da Cadeia de Transporte de Elétrons/deficiência , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Ciona intestinalis/enzimologia , Ciona intestinalis/genética , Técnicas de Introdução de Genes , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Oxirredutases/genética , Proteínas de Plantas/genética , Proteínas Recombinantes/genética , Análise de Sobrevida
10.
FASEB J ; : fj201800090R, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29782205

RESUMO

Biosynthetic precursors of NAD+ can replenish a decreased cellular NAD+ pool and, supposedly via sirtuin (SIRT) deacetylases, improve mitochondrial function. We found decreased hepatic NAD+ concentration and downregulated biosynthesis in Bcs1lp.S78G knock-in mice with respiratory chain complex III deficiency and mitochondrial hepatopathy. Aiming at ameliorating disease progression via NAD+ repletion and improved mitochondrial function, we fed these mice nicotinamide riboside (NR), a NAD+ precursor. A targeted metabolomics verified successful administration and suggested enhanced NAD+ biosynthesis in the treated mice, although hepatic NAD+ concentration was unchanged at the end point. In contrast to our expectations, NR did not improve the hepatopathy, hepatic mitochondrial respiration, or survival of Bcs1lp.S78G mice. We linked this lack of therapeutic effect to NAD+-independent activation of SIRT-1 and -3 via AMPK and cAMP signaling related to the starvation-like metabolic state of Bcs1lp.S78G mice. In summary, we describe an unusual metabolic state with NAD+ depletion accompanied by energy deprivation signals, uncompromised SIRT function, and upregulated oxidative metabolism. Our study highlights that the knowledge of the underlying complex metabolic alterations is critical when designing therapies for mitochondrial dysfunction.-Purhonen, J., Rajendran, J., Tegelberg, S., Smolander, O.-P., Pirinen, E., Kallijärvi, J., Fellman, V. NAD+ repletion produces no therapeutic effect in mice with respiratory chain complex III deficiency and chronic energy deprivation.

11.
Orphanet J Rare Dis ; 12(1): 73, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28427446

RESUMO

BACKGROUND: Mitochondrial diseases due to defective respiratory chain complex III (CIII) are relatively uncommon. The assembly of the eleven-subunit CIII is completed by the insertion of the Rieske iron-sulfur protein, a process for which BCS1L protein is indispensable. Mutations in the BCS1L gene constitute the most common diagnosed cause of CIII deficiency, and the phenotypic spectrum arising from mutations in this gene is wide. RESULTS: A case of CIII deficiency was investigated in depth to assess respiratory chain function and assembly, and brain, skeletal muscle and liver histology. Exome sequencing was performed to search for the causative mutation(s). The patient's platelets and muscle mitochondria showed respiration defects and defective assembly of CIII was detected in fibroblast mitochondria. The patient was compound heterozygous for two novel mutations in BCS1L, c.306A > T and c.399delA. In the cerebral cortex a specific pattern of astrogliosis and widespread loss of microglia was observed. Further analysis showed loss of Kupffer cells in the liver. These changes were not found in infants suffering from GRACILE syndrome, the most severe BCS1L-related disorder causing early postnatal mortality, but were partially corroborated in a knock-in mouse model of BCS1L deficiency. CONCLUSIONS: We describe two novel compound heterozygous mutations in BCS1L causing CIII deficiency. The pathogenicity of one of the mutations was unexpected and points to the importance of combining next generation sequencing with a biochemical approach when investigating these patients. We further show novel manifestations in brain, skeletal muscle and liver, including abnormality in specialized resident macrophages (microglia and Kupffer cells). These novel phenotypes forward our understanding of CIII deficiencies caused by BCS1L mutations.


Assuntos
Acidose Láctica/genética , Colestase/genética , Retardo do Crescimento Fetal/genética , Hemossiderose/genética , Erros Inatos do Metabolismo/genética , Doenças Mitocondriais/congênito , Aminoacidúrias Renais/genética , Animais , Transporte de Elétrons/fisiologia , Complexo III da Cadeia de Transporte de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Doenças Mitocondriais/genética , Encefalomiopatias Mitocondriais/genética , Mutação/genética
12.
Sci Rep ; 7(1): 957, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28424480

RESUMO

Mitochondrial disorders are among the most prevalent inborn errors of metabolism but largely lack treatments and have poor outcomes. High-fat, low-carbohydrate ketogenic diets (KDs) have shown beneficial effects in mouse models of mitochondrial myopathies, with induction of mitochondrial biogenesis as the suggested main mechanism. We fed KD to mice with respiratory chain complex III (CIII) deficiency and progressive hepatopathy due to mutated BCS1L, a CIII assembly factor. The mutant mice became persistently ketotic and tolerated the KD for up to 11 weeks. Liver disease progression was attenuated by KD as shown by delayed fibrosis, reduced cell death, inhibition of hepatic progenitor cell response and stellate cell activation, and normalization of liver enzyme activities. Despite no clear signs of increased mitochondrial biogenesis in the liver, CIII assembly and activity were improved and mitochondrial morphology in hepatocytes normalized. Induction of hepatic glutathione transferase genes and elevated total glutathione level were normalized by KD. Histological findings and transcriptome changes indicated modulation of liver macrophage populations by the mutation and the diet. These results reveal a striking beneficial hepatic response to KD in mice with mitochondrial hepatopathy and warrant further investigations of dietary modification in the management of these conditions in patients.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Complexo III da Cadeia de Transporte de Elétrons/deficiência , Hepatopatias/dietoterapia , Miopatias Mitocondriais/complicações , Mutação , Animais , Células Cultivadas , Dieta Cetogênica , Modelos Animais de Doenças , Complexo III da Cadeia de Transporte de Elétrons/genética , Células Estreladas do Fígado/citologia , Humanos , Hepatopatias/etiologia , Camundongos , Miopatias Mitocondriais/genética , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...