Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18720, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945619

RESUMO

Mosasaurs (Squamata, Mosasauridae) were large aquatic reptiles from the Late Cretaceous that filled a range of ecological niches within marine ecosystems. The type-Maastrichtian strata (68-66 Ma) of the Netherlands and Belgium preserve remains of five species that seemed to have performed different ecological roles (carnivores, piscivores, durophages). However, many interpretations of mosasaur diet and niche partitioning are based on qualitative types of evidence that are difficult to test explicitly. Here, we apply three-dimensional dental microwear texture analysis (DMTA) to provide quantitative dietary constraints for type-Maastrichtian mosasaurs, and to assess levels of niche partitioning between taxa. DMTA indicates that these mosasaurs did not exhibit neatly defined diets or strict dietary partitioning. Instead, we identify three broad groups: (i) mosasaurs Carinodens belgicus and Plioplatecarpus marshi plotting in the space of modern reptiles that are predominantly piscivorous and/or consume harder invertebrate prey, (ii) Prognathodon saturator and Prognathodon sectorius overlapping with extant reptiles that consume larger amounts of softer invertebrate prey items, and (iii) Mosasaurus hoffmanni spanning a larger plot area in terms of dietary constraints. The clear divide between the aforementioned first two groups in texture-dietary space indicates that, despite our small sample sizes, this method shows the potential of DMTA to test hypotheses and provide quantitative constraints on mosasaur diets and ecological roles.


Assuntos
Lagartos , Desgaste dos Dentes , Dente , Animais , Ecossistema , Lagartos/anatomia & histologia , Bélgica , Dieta , Fósseis
2.
R Soc Open Sci ; 8(2): 201754, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33972864

RESUMO

Dental microwear texture analysis (DMTA) is a powerful technique for reconstructing the diets of extant and extinct taxa. Few studies have investigated intraspecific microwear differences along with tooth rows and the influence of endogenous non-dietary variables on texture characteristics. Sampling teeth that are minimally affected by non-dietary variables is vital for robust dietary reconstructions, especially for taxa with non-occlusal (non-chewing) dentitions as no standardized sampling strategies currently exist. Here, we apply DMTA to 13 species of extant reptile (crocodilians and monitor lizards) to investigate intraspecific microwear differences along with tooth rows and to explore the influence of three non-dietary variables on exhibited differences: (i) tooth position, (ii) mechanical advantage, and (iii) tooth aspect ratio. Five species exhibited intraspecific microwear differences. In several crocodilians, the distally positioned teeth exhibited the 'roughest' textures, and texture characteristics correlated with all non-dietary variables. By contrast, the mesial teeth of the roughneck monitor (Varanus rudicollis) exhibited the 'roughest' textures, and texture characteristics did not correlate with aspect ratio. These results are somewhat consistent with how reptiles preferentially use their teeth during feeding. We argue that DMTA has the potential to track mechanical and behavioural differences in tooth use which should be taken into consideration in future dietary reconstructions.

3.
Sci Rep ; 11(1): 2444, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510241

RESUMO

As abundant and widespread predators, elasmobranchs play influential roles in food-web dynamics of marine communities. Clearly, these trophic interactions have significant implications for fisheries management and marine conservation, yet elasmobranch diet is relatively understudied; for the majority of species little or no quantitative dietary data exist. This reflects the difficulties of direct observation of feeding and stomach contents analysis in wild elasmobranchs. Here, by quantifying the 3D surface textures that develop on tooth surfaces as a consequence of feeding, we show that tooth microwear varies with diet in elasmobranchs, providing a new tool for dietary analysis. The technique can be applied to small samples and individuals with no gut contents, and thus offers a way to reduce the impact on wild elasmobranch populations of analysing their dietary ecology, especially relevant in conservation of endangered species. Furthermore, because microwear accumulates over longer periods of time, analysis of texture overcomes the 'snapshot bias' of stomach contents analysis. Microwear texture analysis has the potential to be a powerful tool, complementing existing techniques such as stable isotope analysis, for dietary analysis in living and extinct elasmobranchs.


Assuntos
Dieta , Elasmobrânquios/fisiologia , Desgaste dos Dentes/diagnóstico , Análise de Variância , Animais , Análise de Componente Principal
4.
Nat Commun ; 11(1): 5293, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116130

RESUMO

Pterosaurs, the first vertebrates to evolve active flight, lived between 210 and 66 million years ago. They were important components of Mesozoic ecosystems, and reconstructing pterosaur diets is vital for understanding their origins, their roles within Mesozoic food webs and the impact of other flying vertebrates (i.e. birds) on their evolution. However, pterosaur dietary hypotheses are poorly constrained as most rely on morphological-functional analogies. Here we constrain the diets of 17 pterosaur genera by applying dental microwear texture analysis to the three-dimensional sub-micrometre scale tooth textures that formed during food consumption. We reveal broad patterns of dietary diversity (e.g. Dimorphodon as a vertebrate consumer; Austriadactylus as a consumer of 'hard' invertebrates) and direct evidence of sympatric niche partitioning (Rhamphorhynchus as a piscivore; Pterodactylus as a generalist invertebrate consumer). We propose that the ancestral pterosaur diet was dominated by invertebrates and later pterosaurs evolved into piscivores and carnivores, shifts that might reflect ecological displacements due to pterosaur-bird competition.


Assuntos
Fósseis/anatomia & histologia , Répteis/anatomia & histologia , Dente/anatomia & histologia , Animais , Evolução Biológica , Aves , Quirópteros/anatomia & histologia , Dieta/história , Dieta/veterinária , Ecossistema , Voo Animal , Fósseis/história , História Antiga , Répteis/classificação , Répteis/fisiologia , Desgaste dos Dentes/história , Desgaste dos Dentes/patologia
5.
Sci Rep ; 9(1): 11691, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406164

RESUMO

Reptiles are key components of modern ecosystems, yet for many species detailed characterisations of their diets are lacking. Data currently used in dietary reconstructions are limited either to the last few meals or to proxy records of average diet over temporal scales of months to years, providing only coarse indications of trophic level(s). Proxies that record information over weeks to months would allow more accurate reconstructions of reptile diets and better predictions of how ecosystems might respond to global change drivers. Here, we apply dental microwear textural analysis (DMTA) to dietary guilds encompassing both archosaurian and lepidosaurian reptiles, demonstrating its value as a tool for characterising diets over temporal scales of weeks to months. DMTA, involving analysis of the three-dimensional, sub-micrometre scale textures created on tooth surfaces by interactions with food, reveals that the teeth of reptiles with diets dominated by invertebrates, particularly invertebrates with hard exoskeletons (e.g. beetles and snails), exhibit rougher microwear textures than reptiles with vertebrate-dominated diets. Teeth of fish-feeding reptiles exhibit the smoothest textures of all guilds. These results demonstrate the efficacy of DMTA as a dietary proxy in taxa from across the phylogenetic range of extant reptiles. This method is applicable to extant taxa (living or museum specimens) and extinct reptiles, providing new insights into past, present and future ecosystems.


Assuntos
Dieta , Comportamento Alimentar/fisiologia , Répteis/fisiologia , Desgaste dos Dentes/classificação , Dente/fisiologia , Animais , Ecossistema , Processamento de Imagem Assistida por Computador , Microscopia/métodos , Filogenia , Análise de Componente Principal , Répteis/anatomia & histologia , Répteis/classificação , Dente/anatomia & histologia , Dente/ultraestrutura
6.
Ecol Evol ; 8(22): 11359-11362, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30519448

RESUMO

A new study by Fraser et al (2018) urges the use of phylogenetic comparative methods, whenever possible, in analyses of mammalian tooth wear. We are concerned about this for two reasons. First, this recommendation may mislead the research community into thinking that phylogenetic signal is an artifact of some sort rather than a fundamental outcome of the evolutionary process. Secondly, this recommendation may set a precedent for editors and reviewers to enforce phylogenetic adjustment where it may unnecessarily weaken or even directionally alter the results, shifting the emphasis of analysis from common patterns manifested by large clades to rare cases.

7.
Biol Rev Camb Philos Soc ; 93(4): 2021-2048, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29877021

RESUMO

Pterosaurs are an extinct group of Mesozoic flying reptiles, whose fossil record extends from approximately 210 to 66 million years ago. They were integral components of continental and marginal marine ecosystems, yet their diets remain poorly constrained. Numerous dietary hypotheses have been proposed for different pterosaur groups, including insectivory, piscivory, carnivory, durophagy, herbivory/frugivory, filter-feeding and generalism. These hypotheses, and subsequent interpretations of pterosaur diet, are supported by qualitative (content fossils, associations, ichnology, comparative anatomy) and/or quantitative (functional morphology, stable isotope analysis) evidence. Pterosaur dietary interpretations are scattered throughout the literature with little attention paid to the supporting evidence. Reaching a robustly supported consensus on pterosaur diets is important for understanding their dietary evolution, and their roles in Mesozoic ecosystems. A comprehensive examination of the pterosaur literature identified 314 dietary interpretations (dietary statement plus supporting evidence) from 126 published studies. Multiple alternative diets have been hypothesised for most principal taxonomic pterosaur groups. Some groups exhibit a high degree of consensus, supported by multiple lines of evidence, while others exhibit less consensus. Qualitative evidence supports 87.3% of dietary interpretations, with comparative anatomy most common (62.1% of total). More speciose groups of pterosaur tend to have a greater range of hypothesised diets. Consideration of dietary interpretations within alternative phylogenetic contexts reveals high levels of consensus between equivalent monofenestratan groups, and lower levels of consensus between equivalent non-monofenestratan groups. Evaluating the possible non-biological controls on apparent patterns of dietary diversity reveals that numbers of dietary interpretations through time exhibit no correlation with patterns of publication (number of peer-reviewed publications through time). 73.8% of dietary interpretations were published in the 21st century. Overall, consensus interpretations of pterosaur diets are better accounted for by non-biological signals, such as the impact of the respective quality of the fossil record of different pterosaur groups on research levels. That many interpretations are based on qualitative, often untestable lines of evidence adds significant noise to the data. More experiment-led pterosaur dietary research, with greater consideration of pterosaurs as organisms with independent evolutionary histories, will lead to more robust conclusions drawn from repeatable results. This will allow greater understanding of pterosaur dietary diversity, disparity and evolution and facilitate reconstructions of Mesozoic ecosystems.


Assuntos
Dieta/veterinária , Comportamento Alimentar , Fósseis , Répteis/fisiologia , Animais , Evolução Biológica , Répteis/classificação , Répteis/genética
8.
Proc Biol Sci ; 283(1836)2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27488650

RESUMO

The success of vertebrates is linked to the evolution of a camera-style eye and sophisticated visual system. In the absence of useful data from fossils, scenarios for evolutionary assembly of the vertebrate eye have been based necessarily on evidence from development, molecular genetics and comparative anatomy in living vertebrates. Unfortunately, steps in the transition from a light-sensitive 'eye spot' in invertebrate chordates to an image-forming camera-style eye in jawed vertebrates are constrained only by hagfish and lampreys (cyclostomes), which are interpreted to reflect either an intermediate or degenerate condition. Here, we report-based on evidence of size, shape, preservation mode and localized occurrence-the presence of melanosomes (pigment-bearing organelles) in fossil cyclostome eyes. Time of flight secondary ion mass spectrometry analyses reveal secondary ions with a relative intensity characteristic of melanin as revealed through principal components analyses. Our data support the hypotheses that extant hagfish eyes are degenerate, not rudimentary, that cyclostomes are monophyletic, and that the ancestral vertebrate had a functional visual system. We also demonstrate integument pigmentation in fossil lampreys, opening up the exciting possibility of investigating colour patterning in Palaeozoic vertebrates. The examples we report add to the record of melanosome preservation in Carboniferous fossils and attest to surprising durability of melanosomes and biomolecular melanin.


Assuntos
Evolução Biológica , Olho/anatomia & histologia , Feiticeiras (Peixe)/anatomia & histologia , Lampreias/anatomia & histologia , Pigmentação , Animais , Fósseis , Filogenia , Vertebrados
9.
Nature ; 532(7600): 500-3, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27074512

RESUMO

Tullimonstrum gregarium is an iconic soft-bodied fossil from the Carboniferous Mazon Creek Lagerstätte (Illinois, USA). Despite a large number of specimens and distinct anatomy, various analyses over the past five decades have failed to determine the phylogenetic affinities of the 'Tully monster', and although it has been allied to such disparate phyla as the Mollusca, Annelida or Chordata, it remains enigmatic. The nature and phylogenetic affinities of Tullimonstrum have defied confident systematic placement because none of its preserved anatomy provides unequivocal evidence of homology, without which comparative analysis fails. Here we show that the eyes of Tullimonstrum possess ultrastructural details indicating homology with vertebrate eyes. Anatomical analysis using scanning electron microscopy reveals that the eyes of Tullimonstrum preserve a retina defined by a thick sheet comprising distinct layers of spheroidal and cylindrical melanosomes. Time-of-flight secondary ion mass spectrometry and multivariate statistics provide further evidence that these microbodies are melanosomes. A range of animals have melanin in their eyes, but the possession of melanosomes of two distinct morphologies arranged in layers, forming retinal pigment epithelium, is a synapomorphy of vertebrates. Our analysis indicates that in addition to evidence of colour patterning, ecology and thermoregulation, fossil melanosomes can also carry a phylogenetic signal. Identification in Tullimonstrum of spheroidal and cylindrical melanosomes forming the remains of retinal pigment epithelium indicates that it is a vertebrate; considering its body parts in this new light suggests it was an anatomically unusual member of total group Vertebrata.


Assuntos
Olho , Fósseis , Filogenia , Vertebrados/classificação , Animais , Olho/química , Olho/citologia , Olho/ultraestrutura , Illinois , Melanossomas/ultraestrutura , Microscopia Eletrônica de Varredura , Epitélio Pigmentado da Retina/química , Epitélio Pigmentado da Retina/ultraestrutura , Vertebrados/anatomia & histologia
10.
BMC Evol Biol ; 16: 19, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26801389

RESUMO

BACKGROUND: The origin of the body plan of modern velvet worms (Onychophora) lies in the extinct lobopodians of the Palaeozoic. Helenodora inopinata, from the Mazon Creek Lagerstätte of Illinois (Francis Creek Shale, Carbondale Formation, Middle Pennsylvanian), has been proposed as an intermediate between the "weird wonders" of the Cambrian seas and modern terrestrial predatory onychophorans. The type material of H. inopinata, however, leaves much of the crucial anatomy unknown. RESULTS: Here we present a redescription of this taxon based on more complete material, including new details of the head and posterior portion of the trunk, informed by the results of experimental decay of extant onychophorans. H. inopinata is indeed best resolved as a stem-onychophoran, but lacks several key features of modern velvet worms including, crucially, those that would suggest a terrestrial mode of life. CONCLUSIONS: The presence of H. inopinata in the Carboniferous demonstrates the survival of a Cambrian marine morphotype, and a likely post-Carboniferous origin of crown-Onychophora. Our analysis also demonstrates that taphonomically informed tests of character interpretations have the potential to improve phylogenetic resolution.


Assuntos
Eucariotos/classificação , Fósseis , Evolução Biológica , Filogenia , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA