Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925801

RESUMO

Late leaf spot (LLS) caused by fungus Nothopassalora personata in groundnut is responsible for up to 50% yield loss. To dissect the complex nature of LLS resistance, comparative transcriptome analysis was performed using resistant (GPBD 4), susceptible (TAG 24) and a resistant introgression line (ICGV 13208) and identified a total of 12,164 and 9954 DEGs (differentially expressed genes) respectively in A- and B-subgenomes of tetraploid groundnut. There were 135 and 136 unique pathways triggered in A- and B-subgenomes, respectively, upon N. personata infection. Highly upregulated putative disease resistance genes, an RPP-13 like (Aradu.P20JR) and a NBS-LRR (Aradu.Z87JB) were identified on chromosome A02 and A03, respectively, for LLS resistance. Mildew resistance Locus (MLOs)-like proteins, heavy metal transport proteins, and ubiquitin protein ligase showed trend of upregulation in susceptible genotypes, while tetratricopeptide repeats (TPR), pentatricopeptide repeat (PPR), chitinases, glutathione S-transferases, purple acid phosphatases showed upregulation in resistant genotypes. However, the highly expressed ethylene responsive factor (ERF) and ethylene responsive nuclear protein (ERF2), and early responsive dehydration gene (ERD) might be related to the possible causes of defoliation in susceptible genotypes. The identified disease resistance genes can be deployed in genomics-assisted breeding for development of LLS resistant cultivars to reduce the yield loss in groundnut.


Assuntos
Arachis , Ascomicetos/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Arachis/genética , Arachis/metabolismo , Arachis/microbiologia , Fabaceae/genética , Perfilação da Expressão Gênica , Genes de Plantas , Melhoramento Vegetal , Proteínas de Plantas , Transcriptoma
2.
Sci Rep ; 10(1): 10294, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32581303

RESUMO

The genome sequences of 16 Streptomyces strains, showing potential for plant growth-promotion (PGP) activities in rice, sorghum, chickpea and pigeonpea, isolated from herbal vermicompost, have been decoded. The genome assemblies of the 16 Streptomyces strains ranged from 6.8 Mb to 8.31 Mb, with a GC content of 72 to 73%. The extent of sequence similarity (in terms of shared ortholog) in 16 Streptomyces strains showed 70 to 85% common genes to the closest publicly available Streptomyces genomes. It was possible to identify ~1,850 molecular functions across these 16 strains, of which close to 50% were conserved across the genomes of Streptomyces strains, whereas, ~10% were strain specific and the rest were present in various combinations. Genome assemblies of the 16 Streptomyces strains have also provided genes involved in key pathways related to PGP and biocontrol traits such as siderophores, auxin, hydrocyanic acid, chitinase and cellulase. Further, the genome assemblies provided better understanding of genetic similarity among target strains and with the publically available Streptomyces strains.


Assuntos
Desenvolvimento Vegetal , Rizosfera , Microbiologia do Solo , Streptomyces/genética , Cajanus/crescimento & desenvolvimento , Cajanus/microbiologia , Cicer/crescimento & desenvolvimento , Cicer/microbiologia , DNA Bacteriano/isolamento & purificação , Genoma Bacteriano , Redes e Vias Metabólicas/genética , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Sorghum/crescimento & desenvolvimento , Sorghum/microbiologia , Streptomyces/isolamento & purificação , Streptomyces/metabolismo , Sequenciamento Completo do Genoma
3.
Sci Rep ; 7(1): 9659, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851929

RESUMO

Aflatoxin contamination, caused by fungal pathogen Aspergillus flavus, is a major quality and health problem delimiting the trade and consumption of groundnut (Arachis hypogaea L.) worldwide. RNA-seq approach was deployed to understand the host-pathogen interaction by identifying differentially expressed genes (DEGs) for resistance to in-vitro seed colonization (IVSC) at four critical stages after inoculation in J 11 (resistant) and JL 24 (susceptible) genotypes of groundnut. About 1,344.04 million sequencing reads have been generated from sixteen libraries representing four stages in control and infected conditions. About 64% and 67% of quality filtered reads (1,148.09 million) were mapped onto A (A. duranensis) and B (A. ipaёnsis) subgenomes of groundnut respectively. About 101 million unaligned reads each from J 11 and JL 24 were used to map onto A. flavus genome. As a result, 4,445 DEGs including defense-related genes like senescence-associated proteins, resveratrol synthase, 9s-lipoxygenase, pathogenesis-related proteins were identified. In A. flavus, about 578 DEGs coding for growth and development of fungus, aflatoxin biosynthesis, binding, transport, and signaling were identified in compatible interaction. Besides identifying candidate genes for IVSC resistance in groundnut, the study identified the genes involved in host-pathogen cross-talks and markers that can be used in breeding resistant varieties.


Assuntos
Arachis/imunologia , Arachis/microbiologia , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/imunologia , Interações Hospedeiro-Patógeno , Perfilação da Expressão Gênica , Análise de Sequência de RNA
4.
J Exp Bot ; 68(8): 2037-2054, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338822

RESUMO

Pigeonpea (Cajanus cajan) is an important grain legume of the semi-arid tropics, mainly used for its protein rich seeds. To link the genome sequence information with agronomic traits resulting from specific developmental processes, a Cajanus cajan gene expression atlas (CcGEA) was developed using the Asha genotype. Thirty tissues/organs representing developmental stages from germination to senescence were used to generate 590.84 million paired-end RNA-Seq data. The CcGEA revealed a compendium of 28 793 genes with differential, specific, spatio-temporal and constitutive expression during various stages of development in different tissues. As an example to demonstrate the application of the CcGEA, a network of 28 flower-related genes analysed for cis-regulatory elements and splicing variants has been identified. In addition, expression analysis of these candidate genes in male sterile and male fertile genotypes suggested their critical role in normal pollen development leading to seed formation. Gene network analysis also identified two regulatory genes, a pollen-specific SF3 and a sucrose-proton symporter, that could have implications for improvement of agronomic traits such as seed production and yield. In conclusion, the CcGEA provides a valuable resource for pigeonpea to identify candidate genes involved in specific developmental processes and to understand the well-orchestrated growth and developmental process in this resilient crop.


Assuntos
Cajanus/genética , Produtos Agrícolas/genética , Fertilidade/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Polinização/genética , Sementes/genética , Cajanus/fisiologia , Produtos Agrícolas/fisiologia , Fertilidade/fisiologia , Polinização/fisiologia , Sementes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...