Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 12(2): 375-389, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36750230

RESUMO

CRISPR-Cas12a nucleases have expanded the toolbox for targeted genome engineering in a broad range of organisms. Here, using a high-throughput engineering approach, we explored the potential of a novel CRISPR-MAD7 system for genome editing in human cells. We evaluated several thousand optimization conditions and demonstrated accurate genome reprogramming with modified MAD7. We identified crRNAs that allow for ≤95% non-homologous end joining (NHEJ) and 66% frameshift mutations in various genes and observed the high-cleavage fidelity of MAD7 resulting in undetectable off-target activity. We explored the dsDNA delivery efficiency of CRISPR-MAD7, and by using our optimized transfection protocol, we obtained ≤85% chimeric antigen receptor (CAR) insertions in primary T cells, thus exceeding the baseline integration efficiencies of therapeutically relevant transgenes using currently available virus-free technologies. Finally, we evaluated multiplex editing efficiency with CRISPR-MAD7 and demonstrated simultaneous ≤35% CAR transgene insertions and ≤80% gene disruption efficiencies. Both the platform and our transfection procedure are easily adaptable for further preclinical studies and could potentially be used for clinical manufacturing of CAR T cells.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Transgenes/genética , Endonucleases/genética , Reparo do DNA por Junção de Extremidades
2.
MAbs ; 14(1): 2085536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35699567

RESUMO

The monocled cobra (Naja kaouthia) is among the most feared snakes in Southeast Asia due to its toxicity, which is predominantly derived from long-chain α-neurotoxins. The only specific treatment for snakebite envenoming is antivenom based on animal-derived polyclonal antibodies. Despite the lifesaving importance of these medicines, major limitations in safety, supply consistency, and efficacy create a need for improved treatments. Here, we describe the discovery and subsequent optimization of a recombinant human monoclonal immunoglobulin G antibody against α-cobratoxin using phage display technology. Affinity maturation by light chain-shuffling resulted in a significant increase in in vitro neutralization potency and in vivo efficacy. The optimized antibody prevented lethality when incubated with N. kaouthia whole venom prior to intravenous injection. This study is the first to demonstrate neutralization of whole snake venom by a single recombinant monoclonal antibody, thus providing a tantalizing prospect of bringing recombinant antivenoms based on human monoclonal or oligoclonal antibodies to the clinic.


Assuntos
Elapidae , Mordeduras de Serpentes , Animais , Anticorpos Monoclonais/farmacologia , Antivenenos/farmacologia , Venenos Elapídicos/toxicidade , Humanos , Mordeduras de Serpentes/tratamento farmacológico
3.
Front Immunol ; 12: 715059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408754

RESUMO

Th22 cells constitute a recently described CD4+ T cell subset defined by its production of interleukin (IL)-22. The action of IL-22 is mainly restricted to epithelial cells. IL-22 enhances keratinocyte proliferation but inhibits their differentiation and maturation. Dysregulated IL-22 production has been associated to some inflammatory skin diseases such as atopic dermatitis and psoriasis. How IL-22 production is regulated in human T cells is not fully known. In the present study, we identified conditions to generate Th22 cells that do not co-produce IL-17 from naïve human CD4+ T cells. We show that in addition to the transcription factors AhR and RORγt, the active form of vitamin D3 (1,25(OH)2D3) regulates IL-22 production in these cells. By studying T cells with a mutated vitamin D receptor (VDR), we demonstrate that the 1,25(OH)2D3-induced inhibition of il22 gene transcription is dependent on the transcriptional activity of the VDR in the T cells. Finally, we identified a vitamin D response element (VDRE) in the il22 promoter and demonstrate that 1,25(OH)2D3-VDR directly inhibits IL-22 production via this repressive VDRE.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Interleucinas/biossíntese , Interleucinas/genética , Regiões Promotoras Genéticas , Elemento de Resposta à Vitamina D , Vitamina D/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , Biomarcadores , Linhagem Celular , Citocinas/biossíntese , Humanos , Mediadores da Inflamação/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Motivos de Nucleotídeos , Ligação Proteica , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Calcitriol/metabolismo , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Interleucina 22
4.
Nat Commun ; 9(1): 4957, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459411

RESUMO

In the original version of this Article, the sixth sentence of the first paragraph of the Introduction incorrectly read 'Particularly, elapid antivenoms often have an unbalanced antibody content with relatively low amounts of antibodies against small neurotoxic venom components that have low immunogenicity, which often leads to low immune cgqtns in production animals8-10'. The correct version states 'responses' instead of 'cgqtns'. This has been corrected in both the PDF and HTML versions of the Article.

5.
Nat Commun ; 9(1): 3928, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279409

RESUMO

The black mamba (Dendroaspis polylepis) is one of the most feared snake species of the African savanna. It has a potent, fast-acting neurotoxic venom comprised of dendrotoxins and α-neurotoxins associated with high fatality in untreated victims. Current antivenoms are both scarce on the African continent and present a number of drawbacks as they are derived from the plasma of hyper-immunized large mammals. Here, we describe the development of an experimental recombinant antivenom by a combined toxicovenomics and phage display approach. The recombinant antivenom is based on a cocktail of fully human immunoglobulin G (IgG) monoclonal antibodies capable of neutralizing dendrotoxin-mediated neurotoxicity of black mamba whole venom in a rodent model. Our results show the potential use of fully human monoclonal IgGs against animal toxins and the first use of oligoclonal human IgG mixtures against experimental snakebite envenoming.


Assuntos
Anticorpos Monoclonais Humanizados/química , Antivenenos/química , Dendroaspis , Venenos Elapídicos/imunologia , Fatores Imunológicos/química , Mordeduras de Serpentes/tratamento farmacológico , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Antivenenos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Venenos Elapídicos/antagonistas & inibidores , Fatores Imunológicos/uso terapêutico , Camundongos , Testes de Neutralização
6.
Toxicon ; 146: 151-175, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29534892

RESUMO

Antibody technologies are being increasingly applied in the field of toxinology. Fuelled by the many advances in immunology, synthetic biology, and antibody research, different approaches and antibody formats are being investigated for the ability to neutralize animal toxins. These different molecular formats each have their own therapeutic characteristics. In this review, we provide an overview of the advances made in the development of toxin-targeting antibodies, and discuss the benefits and drawbacks of different antibody formats in relation to their ability to neutralize toxins, pharmacokinetic features, propensity to cause adverse reactions, formulation, and expression for research and development (R&D) purposes and large-scale manufacturing. A research trend seems to be emerging towards the use of human antibody formats as well as camelid heavy-domain antibody fragments due to their compatibility with the human immune system, beneficial therapeutic properties, and the ability to manufacture these molecules cost-effectively.


Assuntos
Anticorpos/química , Antivenenos/farmacologia , Peçonhas/imunologia , Animais , Anticorpos/farmacologia , Antivenenos/química , Camelus , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...