Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(4): e0249066, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33901211

RESUMO

This paper explores whether artificial ground-mobile systems exhibit a consistent regularity of relation among mass, power, and speed, similar to that which exists for biological organisms. To this end, we investigate an empirical allometric formula proposed in the 1980s for estimating the mechanical power expended by an organism of a given mass to move at a given speed, applicable over several orders of magnitude of mass, for a broad range of species, to determine if a comparable regularity applies to a range of vehicles. We show empirically that not only does a similar regularity apply to a wide variety of mobile systems; moreover, the formula is essentially the same, describing organisms and systems ranging from a roach (1 g) to a battle tank (35,000 kg). We also show that for very heavy vehicles (35,000-100,000,000 kg), the formula takes a qualitatively different form. These findings point to a fundamental similarity between biological and artificial locomotion that transcends great differences in morphology, mechanisms, materials, and behaviors. To illustrate the utility of this allometric relation, we investigate the significant extent to which ground robotic systems exhibit a higher cost of transport than either organisms or conventional vehicles, and discuss ways to overcome inefficiencies.


Assuntos
Baratas/fisiologia , Modelos Teóricos , Veículos Automotores , Movimento , Animais , Fenômenos Biomecânicos , Biônica/métodos , Metabolismo Energético , Robótica/métodos , Termodinâmica
2.
Bioinspir Biomim ; 16(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33264754

RESUMO

The utility, efficiency, and reliability of legged robots has increased dramatically in recent years. Limbed robots are now capable of locomotion across a variety of terrains, however, achieving both rapid and efficient operation when ground conditions are complex or deformable is still challenging. Resistive terrains such as streams, snow, mud, littoral regions, and tall grass are an important class or set of complex and difficult terrain which are commonly found in the desired operating environments of legged robots. This work presents a reduced-order, dynamic model designed to capture the effect of these environments on the legs of a robot while running. This model, and an experimental platform, are used to evaluate the efficacy of a pair of strategies for adapting running to the inevitable slowing that occurs in resistive terrains. Simulation and experimental results show that intelligent retraction of the foot during flight has a more beneficial effect on the maximum achievable velocity and cost of transport of the runner than a 'punting gait' for a range of fluid depths. However, this performance gap became much smaller in deep fluids suggesting that fluid depth may drive transition from a foot retraction gait to a punting gait.


Assuntos
Biomimética , Robótica , Biomimética/métodos , Marcha , Locomoção , Reprodutibilidade dos Testes , Robótica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...