Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1489, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413572

RESUMO

Blue denim, a billion-dollar industry, is currently dyed with indigo in an unsustainable process requiring harsh reducing and alkaline chemicals. Forming indigo directly in the yarn through indican (indoxyl-ß-glucoside) is a promising alternative route with mild conditions. Indican eliminates the requirement for reducing agent while still ending as indigo, the only known molecule yielding the unique hue of blue denim. However, a bulk source of indican is missing. Here, we employ enzyme and process engineering guided by techno-economic analyses to develop an economically viable drop-in indican synthesis technology. Rational engineering of PtUGT1, a glycosyltransferase from the indigo plant, alleviated the severe substrate inactivation observed with the wildtype enzyme at the titers needed for bulk production. We further describe a mild, light-driven dyeing process. Finally, we conduct techno-economic, social sustainability, and comparative life-cycle assessments. These indicate that the presented technologies have the potential to significantly reduce environmental impacts from blue denim dyeing with only a modest cost increase.


Assuntos
Indicã , Índigo Carmim , Corantes , Plantas , Meio Ambiente
2.
Biotechnol J ; 18(6): e2200609, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36974342

RESUMO

C-glycosyltransferases (C-GTs) offer selective and efficient synthesis of natural product C-glycosides under mild reaction conditions. In contrast, the chemical synthesis of these C-glycosides is challenging and environmentally harmful. The rare occurrence of C-glycosylated compounds in Nature, despite their stability, suggests that their biosynthetic enzymes, C-GTs, might be scarce. Indeed, the number of characterized C-GTs is remarkably lower than O-GTs. Therefore, discovery efforts are crucial for expanding our knowledge of these enzymes and their efficient application in biocatalytic processes. This study aimed to identify new C-GTs based on their primary sequence. 18 new C-GTs were discovered, 10 of which yielded full conversion of phloretin to its glucosides. Phloretin is a dihydrochalcone natural product, with its mono-C-glucoside, nothofagin, having various health-promoting effects. Several of these enzymes enabled highly selective production of either nothofagin (UGT708A60 and UGT708F2) or phloretin-di-C-glycoside (UGT708D9 and UGT708B8). Molecular docking simulations, based on structural models of selected enzymes, showed productive binding modes for the best phloretin C-GTs, UGT708F2 and UGT708A60. Moreover, we characterized UGT708A60 as a highly efficient phloretin mono-C glycosyltransferase (kcat  = 2.97 s-1 , KM  = 0.1 µM) active in non-buffered, dilute sodium hydroxide (0.1-1 mM). We further investigated UGT708A60 as an efficient biocatalyst for the bioproduction of nothofagin.


Assuntos
Glicosiltransferases , Floretina , Glicosiltransferases/química , Floretina/química , Floretina/metabolismo , Simulação de Acoplamento Molecular , Glicosídeos
3.
Plant J ; 111(6): 1539-1549, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35819080

RESUMO

Cyanogenic glucosides are important defense molecules in plants with useful biological activities in animals. Their last biosynthetic step consists of a glycosylation reaction that confers stability and increases structural diversity and is catalyzed by the UDP-dependent glycosyltransferases (UGTs) of glycosyltransferase family 1. These versatile enzymes have large and varied substrate scopes, and the structure-function relationships controlling scope and specificity remain poorly understood. Here, we report substrate-bound crystal structures and rational engineering of substrate and stereo-specificities of UGT85B1 from Sorghum bicolor involved in biosynthesis of the cyanogenic glucoside dhurrin. Substrate specificity was shifted from the natural substrate (S)-p-hydroxymandelonitrile to (S)-mandelonitrile by combining a mutation to abolish hydrogen bonding to the p-hydroxyl group with a mutation to provide steric hindrance at the p-hydroxyl group binding site (V132A/Q225W). Further, stereo-specificity was shifted from (S) to (R) by substituting four rationally chosen residues within 6 Å of the nitrile group (M312T/A313T/H408F/G409A). These activities were compared to two other UGTs involved in the biosynthesis of aromatic cyanogenic glucosides in Prunus dulcis (almond) and Eucalyptus cladocalyx. Together, these studies enabled us to pinpoint factors that drive substrate and stereo-specificities in the cyanogenic glucoside biosynthetic UGTs. The structure-guided engineering of the functional properties of UGT85B1 enhances our understanding of the evolution of UGTs involved in the biosynthesis of cyanogenic glucosides and will enable future engineering efforts towards new biotechnological applications.


Assuntos
Aminoácidos , Nitrilas , Animais , Glucosídeos/metabolismo , Glicosídeos , Glicosiltransferases , Nitrilas/metabolismo , Difosfato de Uridina
4.
ACS Sustain Chem Eng ; 10(16): 5078-5083, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35493695

RESUMO

Regioselective glycosylation is a chemical challenge, leading to multistep syntheses with protecting group manipulations, ultimately resulting in poor atom economy and compromised sustainability. Enzymes allow eco-friendly and regioselective bond formation with fully deprotected substrates in a single reaction. For the selective glucosylation of silibinin, a pharmaceutical challenged with low solubility, enzyme engineering has previously been employed, but the resulting yields and k cat were limited, prohibiting the application of the engineered catalyst. Here, we identified a naturally regioselective silibinin glucosyltransferase, UGT706F8, a family 1 glycosyltransferase from Zea mays. It selectively and efficiently (k cat = 2.1 ± 0.1 s-1; K M = 36.9 ± 5.2 µM; TTN = 768 ± 22) catalyzes the quantitative synthesis of silibinin 7-O-ß-d-glucoside. We solved the crystal structure of UGT706F8 and investigated the molecular determinants of regioselective silibinin glucosylation. UGT706F8 was the only regioselective enzyme among 18 glycosyltransferases found to be active on silibinin. We found the temperature optimum of UGT706F8 to be 34 °C and the pH optimum to be 7-8. Our results indicate that UGT706F8 is an efficient silibinin glycosyltransferase that enables biocatalytic production of silbinin 7-O-ß-d-glucoside.

5.
J Steroid Biochem Mol Biol ; 212: 105927, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34089835

RESUMO

The human microsomal cytochrome P450 enzyme CYP46A1 plays a crucial role in cholesterol elimination from the brain. It performs a 24-hydroxylation of cholesterol and is of outstanding significance for memory and cognition. This study demonstrates the catalytic activity of human CYP46A1 towards an anabolic androgenic steroid, oral turinabol (dehydrochloromethyltestosterone, 4-chloro-17ß-dihydroxy,17α-methylandrosta-1,4-dien-3-one), which is a doping substance. CYP46A1 is the first human microsomal steroid-converting P450 showing activity towards this xenobiotic compound. Furthermore, the inhibitory effect of oral turinabol on the cholesterol conversion has been investigated in vitro demonstrating competition of the two substrates on the active site of CYP46A1 which might be of importance for potential pathogenic effects of oral turinabol. The conversion of oral turinabol was found to be selective resulting in the formation of only one product, as shown by HPLC analysis. To produce sufficient amounts of this product for NMR analysis, a system expressing human full-length CYP46A1 and CPR on a bicistronic vector was successfully developed realizing the selective cholesterol 24-hydroxylation in E. coli in mg amounts. Using this novel whole-cell system, the conversion of oral turinabol was performed and the product of this conversion by CYP46A1 was isolated and identified as 16ß-hydroxy oral turinabol by NMR.


Assuntos
Anabolizantes/farmacologia , Colesterol 24-Hidroxilase/metabolismo , Testosterona/análogos & derivados , Encéfalo/enzimologia , Colesterol 24-Hidroxilase/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos , Simulação de Acoplamento Molecular , Oxandrolona/farmacologia , Testosterona/farmacologia
6.
Nat Prod Rep ; 38(3): 432-443, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33005913

RESUMO

Covering: up to 2020C-Glycosyltransferases are enzymes that catalyse the transfer of sugar molecules to carbon atoms in substituted aromatic rings of a variety of natural products. The resulting ß-C-glycosidic bond is more stable in vivo than most O-glycosidic bonds, hence offering an attractive modulation of a variety of compounds with multiple biological activities. While C-glycosylated natural products have been known for centuries, our knowledge of corresponding C-glycosyltransferases is scarce. Here, we discuss commonalities and differences in the known C-glycosyltransferases, review attempts to leverage them as synthetic biocatalysts, and discuss current challenges and limitations in their research and application.


Assuntos
Produtos Biológicos/química , Biotecnologia/métodos , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Produtos Biológicos/metabolismo , Glicosilação , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Engenharia de Proteínas
7.
Plant Physiol ; 184(4): 1744-1761, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33020252

RESUMO

C13-apocarotenoids (norisoprenoids) are carotenoid-derived oxidation products that perform important physiological functions in plants. Although their biosynthetic pathways have been extensively studied, their metabolism including glycosylation remains poorly understood. Candidate uridine-diphosphate glycosyltransferase genes (UGTs) were selected based on their high transcript abundance in comparison with other UGTs in vegetative tissues of Nicotiana benthamiana and peppermint (Mentha × piperita), as these tissues are rich sources of apocarotenoid glucosides. Hydroxylated C13-apocarotenol substrates were produced by P450-catalyzed biotransformation and microbial/plant enzyme systems were established for the synthesis of glycosides. Natural substrates were identified by physiological aglycone libraries prepared from isolated plant glycosides. In total, we identified six UGTs that catalyze the glucosylation of C13-apocarotenols, where Glc is bound either to the cyclohexene ring or the butane side chain. MpUGT86C10 is a superior novel enzyme that catalyzes the glucosylation of allelopathic 3-hydroxy-α-damascone, 3-oxo-α-ionol, 3-oxo-7,8-dihydro-α-ionol (Blumenol C), and 3-hydroxy-7,8-dihydro-ß-ionol, whereas a germination test demonstrated the higher phytotoxic potential of a norisoprenoid glucoside in comparison to its aglycone. Glycosylation of C13-apocarotenoids has several functions in plants, including increased allelopathic activity of the aglycone, facilitating exudation by roots and allowing symbiosis with arbuscular mycorrhizal fungi. The results enable in-depth analysis of the roles of glycosylated norisoprenoid allelochemicals, the physiological functions of apocarotenoids during arbuscular mycorrhizal colonization, and the associated maintenance of carotenoid homeostasis.


Assuntos
Carotenoides/metabolismo , Glicosiltransferases/metabolismo , Mentha piperita/genética , Mentha piperita/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Difosfato de Uridina/metabolismo , Vias Biossintéticas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Glicosilação , Glicosiltransferases/genética
8.
Biochem Biophys Res Commun ; 524(2): 295-300, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-31987498

RESUMO

Vitamin D2 is a form of vitamin D derived from mushrooms and plants which is structurally modified in the body due to the action of several enzymes. The resulting metabolites represent important compounds with potential bioactive properties. However, they are poorly studied and their availability is mostly limited. In order to identify new enzymes capable of producing vitamin D2 metabolites, we investigated a bacterial P450 monooxygenase, CYP109E1, which was previously shown to be a vitamin D3 hydroxylase. It was found that CYP109E1 catalyzes a vitamin D2 two-step hydroxylation at positions C24 and C25 resulting in the generation of 24(R),25-diOH VD2. Interestingly, the enzyme showed high selectivity towards vitamin D2, whereas it showed an unselective product pattern for the structurally similar vitamin D3. Our docking results for vitamin D2 and D3 revealed favorable hydroxylation positions for both substrates and suggested an explanation for the high selectivity of CYP109E1 towards vitamin D2. In addition, we established a whole-cell biocatalyst expressing CYP109E1 in Bacillus megaterium to produce 24(R),25-diOH VD2 and a production yield of 12.3 ± 1.2 mg/L was obtained after 48 h. To the best of our knowledge, this is the first report on the generation of 24(R),25-diOH VD2 by a microbial biocatalyst allowing a low-cost and eco-friendly production of this pharmaceutically interesting and expensive metabolite from the relatively cheap substrate, VD2.


Assuntos
Bacillus megaterium/metabolismo , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ergocalciferóis/metabolismo , Bacillus megaterium/enzimologia , Hidroxilação , Simulação de Acoplamento Molecular , Estereoisomerismo , Especificidade por Substrato
9.
Chembiochem ; 20(5): 655-658, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30398298

RESUMO

In this study, the ability of CYP109E1 from Bacillus megaterium DSM319 to metabolize cholesterol was investigated. This steroid was identified as a new substrate to be converted by CYP109E1 with adrenodoxin and adrenodoxin reductase as redox partners in vitro. The biotransformation was successfully reproduced in vivo by using Bacillus megaterium cells that overexpressed CYP109E1. To enhance the production of cholesterol derivatives, an Escherichia coli based whole-cell system that harbored CYP109E1 was established. This novel system showed a 3.3-fold higher activity than that of the B. megaterium system, yielding about 45 mg L-1 of these products. Finally, the reaction products were isolated and identified to be the highly important cholesterol derivatives 24(S)- and 25-hydroxycholesterol.


Assuntos
Bacillus megaterium/metabolismo , Sistema Enzimático do Citocromo P-450/fisiologia , Escherichia coli/metabolismo , Oxigenases de Função Mista/fisiologia , Adrenodoxina/metabolismo , Biotransformação , Colesterol/análogos & derivados , Colesterol/metabolismo , Ferredoxina-NADP Redutase/metabolismo , Hidroxilação , Oxirredução , Especificidade por Substrato
10.
FEBS J ; 286(6): 1240-1249, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30537187

RESUMO

Bacterial P450s have considerable potential for biotechnological applications. The P450 CYP106A2 from Bacillus megaterium ATCC 13368 converts progesterone to several hydroxylated products that are important precursors for pharmaceutical substances. As high yields of monohydroxylated products are required for biotechnological processes, improving this conversion is of considerable interest. It has previously been shown that the binding mode of the redox partner can affect the selectivity of the progesterone hydroxylation, being more stringent in case of the Etp1 compared with Adx(4-108). Therefore, in this study we aimed to improve hydroxylation selectivity by optimizing the binding of Adx(4-108) with CYP106A2 allowing for a shorter distance between both redox centers. To change the putative binding interface of Adx(4-108) with CYP106A2, molecular docking was used to choose mutation sites for alteration. Mutants at positions Y82 and P108 of Adx were produced and investigated, and confirmed our hypothesis. Protein-protein docking, as well as conversion studies, using the mutants demonstrated that the iron-sulfur(FeS) cluster/heme distance diminished significantly, which subsequently led to an approximately 2.5-fold increase in 15ß-hydroxyprogesterone, the main product of progesterone conversion by CYP106A2.


Assuntos
Adrenodoxina/metabolismo , Bacillus megaterium/metabolismo , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Progesterona/metabolismo , Adrenodoxina/química , Adrenodoxina/genética , Bacillus megaterium/genética , Bacillus megaterium/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Hidroxilação , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutação , Oxirredução , Conformação Proteica
11.
Appl Microbiol Biotechnol ; 101(23-24): 8379-8393, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29018905

RESUMO

CYP109E1 is a cytochrome P450 monooxygenase from Bacillus megaterium with a hydroxylation activity for testosterone and vitamin D3. This study reports the screening of a focused library of statins, terpene-derived and steroidal compounds to explore the substrate spectrum of this enzyme. Catalytic activity of CYP109E1 towards the statin drug-precursor compactin and the prodrugs lovastatin and simvastatin as well as biotechnologically relevant terpene compounds including ionones, nootkatone, isolongifolen-9-one, damascones, and ß-damascenone was found in vitro. The novel substrates induced a type I spin-shift upon binding to P450 and thus permitted to determine dissociation constants. For the identification of conversion products by NMR spectroscopy, a B. megaterium whole-cell system was applied. NMR analysis revealed for the first time the ability of CYP109E1 to catalyze an industrially highly important reaction, the production of pravastatin from compactin, as well as regioselective oxidations generating drug metabolites (6'ß-hydroxy-lovastatin, 3'α-hydroxy-simvastatin, and 4″-hydroxy-simvastatin) and valuable terpene derivatives (3-hydroxy-α-ionone, 4-hydroxy-ß-ionone, 11,12-epoxy-nootkatone, 4(R)-hydroxy-isolongifolen-9-one, 3-hydroxy-α-damascone, 4-hydroxy-ß-damascone, and 3,4-epoxy-ß-damascone). Besides that, a novel compound, 2-hydroxy-ß-damascenone, produced by CYP109E1 was identified. Docking calculations using the crystal structure of CYP109E1 rationalized the experimentally observed regioselective hydroxylation and identified important amino acid residues for statin and terpene binding.


Assuntos
Bacillus megaterium/enzimologia , Bacillus megaterium/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Terpenos/metabolismo , Bacillus megaterium/genética , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Cinética , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Oxirredução , Conformação Proteica , Esteroides/metabolismo
12.
J Biotechnol ; 243: 38-47, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28043840

RESUMO

In this study the ability of CYP109E1 from Bacillus megaterium to metabolize vitamin D3 (VD3) was investigated. In an in vitro system using bovine adrenodoxin reductase (AdR) and adrenodoxin (Adx4-108), VD3 was converted by CYP109E1 into several products. Furthermore, a whole-cell system in B. megaterium MS941 was established. The new system showed a conversion of 95% after 24h. By NMR analysis it was found that CYP109E1 catalyzes hydroxylation of VD3 at carbons C-24 and C-25, resulting in the formation of 24(S)-hydroxyvitamin D3 (24S(OH)VD3), 25-hydroxyvitamin D3 (25(OH)VD3) and 24S,25-dihydroxyvitamin D3 (24S,25(OH)2VD3). Through time dependent whole-cell conversion of VD3, we identified that the formation of 24S,25(OH)2VD3 by CYP109E1 is derived from VD3 via the intermediate 24S(OH)VD3. Moreover, using docking analysis and site-directed mutagenesis, we identified important active site residues capable of determining substrate specificity and regio-selectivity. HPLC analysis of the whole-cell conversion with the I85A-mutant revealed an increased selectivity towards 25-hydroxylation of VD3 compared with the wild type activity, resulting in an approximately 2-fold increase of 25(OH)VD3 production (45mgl-1day-1) compared to wild type (24.5mgl-1day-1).


Assuntos
Bacillus megaterium/enzimologia , Colecalciferol/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Adrenodoxina/metabolismo , Animais , Bacillus megaterium/genética , Bacillus megaterium/metabolismo , Calcifediol/biossíntese , Calcifediol/química , Calcifediol/metabolismo , Catálise , Bovinos , Colecalciferol/química , Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/genética , Ativação Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Ferredoxina-NADP Redutase/metabolismo , Hidroxilação , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Vitamina D/análogos & derivados , Vitamina D/biossíntese , Vitamina D/química , Vitamina D/metabolismo
13.
J Biotechnol ; 242: 101-110, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-27988215

RESUMO

Prednisone and dexamethasone are synthetic glucocorticoids widely used as anti-inflammatory and immunosuppressive drugs. Since their hydroxylated derivatives could serve as novel potential drug candidates, our aim was to investigate their biotransformation by the steroid hydroxylase CYP106A2 from Bacillus megaterium ATCC13368. In vitro we were able to demonstrate highly selective 15ß-hydroxylation of the steroids with a reconstituted CYP106A2 system. The reactions were thoroughly characterized, determining the kinetic parameters and the equilibrium dissociation constant. The observed lower conversion rate in the case of dexamethasone hydroxylation was clarified by quantum chemical calculations, which suggest a rearrangement of the intermediately formed radical species. To identify the obtained conversion products with NMR, CYP106A2-based Bacillus megaterium whole-cell systems were applied resulting in an altered product pattern for prednisone, yet no significant change for dexamethasone conversion compared to in vitro. Even the MS941 control strain performed a highly selective biotransformation of prednisone producing the known metabolite 20ß-dihydrocortisone. The identified novel prednisone derivatives 15ß, 17, 20ß, 21-tetrahydroxy-preg-4-en-3,11-dione and 15ß, 17, 20ß, 21-tetrahydroxy-preg-1,4-dien-3,11-dione as well as the 15ß-hydroxylated variants of both drugs are promising candidates for drug-design and development approaches.


Assuntos
Bacillus megaterium/enzimologia , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Dexametasona/farmacocinética , Prednisona/farmacocinética , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Bacillus megaterium/genética , Bacillus megaterium/metabolismo , Proteínas de Bactérias/genética , Biotransformação , Cortisona/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Dexametasona/química , Dexametasona/farmacologia , Ativação Enzimática , Imunossupressores/química , Imunossupressores/farmacocinética , Imunossupressores/farmacologia , Simulação de Acoplamento Molecular , Oxirredução , Prednisona/química , Prednisona/farmacologia , Proteínas Recombinantes/biossíntese
14.
J Biotechnol ; 240: 68-75, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27816653

RESUMO

In the current work, we describe the identification and characterization of the first plasmid-encoded P450 (CYP107DY1) from a Bacillus species. The recombinant CYP107DY1 exhibits characteristic P450 absolute and reduced CO-bound difference spectra. Reconstitution with different redox systems revealed the autologous one, consisting of BmCPR and Fdx2, as the most effective one. Screening of a library of 18 pharmaceutically relevant compounds displayed activity towards mevastatin to produce pravastatin. Pravastatin is an important therapeutic drug to treat hypercholesterolemia, which was described to be produced by oxyfunctionlization of mevastatin (compactin) by members of CYP105 family. The hydroxylation at C6 of mevastatin was also suggested by docking this compound into a computer model created for CYP107DY1. Moreover, in view of the biotechnological application, CYP107DY1 as well as its redox partners (BmCPR and Fdx2) were successfully utilized to establish an E. coli based whole-cell system for an efficient biotransformation of mevastatin. The in vitro and in vivo application of the CYP07DY1 also offers the possibility for the screening of more substrates, which could open up further biotechnological usage of this enzyme.


Assuntos
Bacillus megaterium/metabolismo , Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Biotransformação , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Escherichia coli , Hidroxilação , Lovastatina/análogos & derivados , Lovastatina/metabolismo , Plasmídeos , Pravastatina/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...