Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(27): 12158-12166, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35762507

RESUMO

The reaction mechanism of the CH3OH synthesis by the hydrogenation of CO2 on Cu catalysts is unclear because of the challenge in experimentally detecting reaction intermediates formed by the hydrogenation of adsorbed formate (HCOOa). Thus, the objective of this study is to clarify the reaction mechanism of the CH3OH synthesis by establishing the kinetic natures of intermediates formed by the hydrogenation of adsorbed HCOOa on Cu(111). We exposed HCOOa on Cu(111) to atomic hydrogen at low temperatures of 200-250 K and observed the species using infrared reflection absorption (IRA) spectroscopy and temperature-programmed desorption (TPD) studies. In the IRA spectra, a new peak was observed upon the exposure of HCOOa on Cu(111) to atomic hydrogen at 200 K and was assigned to the adsorbed dioxymethylene (H2COOa) species. The intensity of the new peak gradually decreased with heating from 200 to 290 K, whereas the IR peaks representing HCOOa species increased correspondingly. In addition, small amounts of formaldehyde (HCHO), which were formed by the exposure of HCOOa species to atomic hydrogen, were detected in the TPD studies. Therefore, H2COOa is formed via hydrogenation by atomic hydrogen, which thermally decomposes at ∼250 K on Cu(111). We propose a potential diagram of the CH3OH synthesis via H2COOa from CO2 on Cu surfaces, with the aid of density functional theory calculations and literature data, in which the hydrogenation of bidentate HCOOa to H2COOa is potentially the rate-determining step and accounts for the apparent activation energy of the methanol synthesis from CO2 on Cu surfaces.

2.
ACS Omega ; 6(8): 5183-5196, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33681560

RESUMO

Understanding the nature of active sites is a non-trivial task, especially when the catalyst is sensitively affected by chemical reactions and environmental conditions. The challenge lies on capturing explicitly the dynamics of catalyst evolution during reactions. Despite the complexity of catalyst reconstruction, we can untangle them into several elementary processes, of which surface diffusion is of prime importance. By applying density functional theory-kinetic Monte Carlo (DFT-KMC) simulation employed with cluster expansion (CE), we investigated the microscopic mechanism of surface diffusion of Cu with defects such as steps and kinks. Based on the result, the energetics obtained from CE have shown good agreement with DFT calculations. Various diffusion events during the step fluctuations are discussed as well. Aside from the adatom attachment, the diffusion along the step edge is found to be the dominant mass transport mechanism, indicated by the lowest activation energy. We also calculated time correlation functions at 300, 400, and 500 K. However, the time exponent in the correlation function does not strictly follow the power law behavior due to the limited step length, which inhibits variation in the kink density.

3.
Small ; 17(20): e2008010, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33759365

RESUMO

Formic acid (HCOOH) can be catalytically decomposed into H2 and CO2 and is a promising hydrogen storage material. As H2 production catalysts, Cu surfaces allow selective HCOOH decarboxylation; however, the on-surface HCOOH decomposition reaction pathway remains controversial. In this study, the temperature dependence of the HCOOH/Cu(111) adsorption structures is elucidated by scanning tunneling microscopy and non-contact atomic force microscopy, establishing the adsorbate chemical species using density functional theory. 2D HCOOH islands at 80 K, linear chains of HCOOH and monodentate formate at 150 K, chain-like assemblies of monodentate and bidentate formate at 200 K, and bidentate formate clusters at 300 K are observed. At each temperature, the adsorbates experience attractive interactions among themselves. Such aggregation stabilizes them against desorption and decomposition. Thus, accurate evaluation of intermolecular interactions is essential to understand catalytic reactivity.


Assuntos
Formiatos , Hidrogênio , Adsorção , Catálise
4.
J Chem Phys ; 150(15): 154707, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31005107

RESUMO

We present a density functional theory study on the adsorption and decomposition mechanisms of monomeric formic acid (HCOOH) on a Cu(111) surface. We used Perdew-Burke-Ernzerhof (PBE) functional, PBE with dispersion correction (PBE-D2), and van der Waals density functionals (vdW-DFs). We found that the adsorption energy of HCOOH by using the PBE functional is smaller than the experimental value, while the PBE-D2 and vdW-DFs give better agreement with experimental results. The activation energies of decomposition calculated by using PBE-D2 and vdW-DFs are lower compared with desorption energies, seemingly in contradiction with experimental findings at room temperature, in which no decomposition of HCOOH on Cu(111) is observed when the surface is exposed to the gas phase HCOOH. We performed the reaction rate analysis based on the first-principles calculations for desorption and decomposition processes to clarify this contradiction. We found that the desorption of monomeric HCOOH is faster than that of its decomposition rate at room temperature because of a much larger pre-exponential factor. Thus, no decomposition of monomeric HCOOH should take place at room temperature. Our analysis revealed the competition between desorption and decomposition processes of HCOOH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...