Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
MAbs ; 4(6): 710-23, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23007574

RESUMO

The c-Met proto-oncogene is a multifunctional receptor tyrosine kinase that is stimulated by its ligand, hepatocyte growth factor (HGF), to induce cell growth, motility and morphogenesis. Dysregulation of c-Met function, through mutational activation or overexpression, has been observed in many types of cancer and is thought to contribute to tumor growth and metastasis by affecting mitogenesis, invasion, and angiogenesis. We identified human monoclonal antibodies that bind to the extracellular domain of c-Met and inhibit tumor growth by interfering with ligand-dependent c-Met activation. We identified antibodies representing four independent epitope classes that inhibited both ligand binding and ligand-dependent activation of c-Met in A549 cells. In cells, the antibodies antagonized c-Met function by blocking receptor activation and by subsequently inducing downregulation of the receptor, translating to phenotypic effects in soft agar growth and tubular morphogenesis assays. Further characterization of the antibodies in vivo revealed significant inhibition of c-Met activity (≥ 80% lasting for 72-96 h) in excised tumors corresponded to tumor growth inhibition in multiple xenograft tumor models. Several of the antibodies identified inhibited the growth of tumors engineered to overexpress human HGF and human c-Met (S114 NIH 3T3) when grown subcutaneously in athymic mice. Furthermore, lead candidate antibody CE-355621 inhibited the growth of U87MG human glioblastoma and GTL-16 gastric xenografts by up to 98%. The findings support published pre-clinical and clinical data indicating that targeting c-Met with human monoclonal antibodies is a promising therapeutic approach for the treatment of cancer.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Proteínas Proto-Oncogênicas c-met/imunologia , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/imunologia , Processos de Crescimento Celular/efeitos dos fármacos , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/imunologia , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Epitopos Imunodominantes/imunologia , Camundongos , Camundongos Nus , Morfogênese/efeitos dos fármacos , Células NIH 3T3 , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-met/genética , Transgenes/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Proteins ; 76(3): 706-17, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19280600

RESUMO

Dihydrofolate reductase (DHFR) is the enzyme responsible for the NADPH-dependent reduction of 5,6-dihydrofolate to 5,6,7,8-tetrahydrofolate, an essential cofactor in the synthesis of purines, thymidylate, methionine, and other key metabolites. Because of its importance in multiple cellular functions, DHFR has been the subject of much research targeting the enzyme with anticancer, antibacterial, and antimicrobial agents. Clinically used compounds targeting DHFR include methotrexate for the treatment of cancer and diaminopyrimidines (DAPs) such as trimethoprim (TMP) for the treatment of bacterial infections. DAP inhibitors of DHFR have been used clinically for >30 years and resistance to these agents has become widespread. Methicillin-resistant Staphylococcus aureus (MRSA), the causative agent of many serious nosocomial and community acquired infections, and other gram-positive organisms can show resistance to DAPs through mutation of the chromosomal gene or acquisition of an alternative DHFR termed "S1 DHFR." To develop new therapies for health threats such as MRSA, it is important to understand the molecular basis of DAP resistance. Here, we report the crystal structure of the wild-type chromosomal DHFR from S. aureus in complex with NADPH and TMP. We have also solved the structure of the exogenous, TMP resistant S1 DHFR, apo and in complex with TMP. The structural and thermodynamic data point to important molecular differences between the two enzymes that lead to dramatically reduced affinity of DAPs to S1 DHFR. These differences in enzyme binding affinity translate into reduced antibacterial activity against strains of S. aureus that express S1 DHFR.


Assuntos
Cristalografia por Raios X/métodos , Staphylococcus aureus/enzimologia , Tetra-Hidrofolato Desidrogenase/química , Trimetoprima/química , Ligação de Hidrogênio , Mutação , NADP/química , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Termodinâmica , Trimetoprima/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA