Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Electrophoresis ; 44(23): 1859-1867, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37528726

RESUMO

Liquid biopsy has shown significant research and clinical implications in cancer. Particularly, the isolation of circulating tumor cells (CTCs) in preclinical studies can provide crucial information about disease progression and therefore may guide treatment decisions. Microfluidic isolation systems have played a considerable role in CTC isolation for cancer studies, disease diagnosis, and prognosis. CTCs are often studied using preclinical animal models such as xenografts or syngeneic models. However, most isolation systems are tested on human cell lines and human blood, whereas less validation studies are done on preclinical samples such as CTCs from mouse models. Here, we demonstrate and evaluate a complete workflow of a sized-based inertial microfluidic device to isolate CTCs from blood using exclusively mouse blood and mouse cancer cell lines. We then incorporate the cytospin, a commonly used method for enumeration of small number of cells in a glass slide to quantify the total cell yield of our workflow.


Assuntos
Neoplasias da Mama , Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Animais , Camundongos , Humanos , Feminino , Microfluídica/métodos , Neoplasias da Mama/patologia , Células Neoplásicas Circulantes/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Separação Celular/métodos , Técnicas Analíticas Microfluídicas/métodos
2.
Mol Cell ; 80(1): 87-101.e5, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931746

RESUMO

Studies in three mouse models of breast cancer identified profound discrepancies between cell-autonomous and systemic Akt1- or Akt2-inducible deletion on breast cancer tumorigenesis and metastasis. Although systemic Akt1 deletion inhibits metastasis, cell-autonomous Akt1 deletion does not. Single-cell mRNA sequencing revealed that systemic Akt1 deletion maintains the pro-metastatic cluster within primary tumors but ablates pro-metastatic neutrophils. Systemic Akt1 deletion inhibits metastasis by impairing survival and mobilization of tumor-associated neutrophils. Importantly, either systemic or neutrophil-specific Akt1 deletion is sufficient to inhibit metastasis of Akt-proficient tumors. Thus, Akt1-specific inhibition could be therapeutic for breast cancer metastasis regardless of primary tumor origin. Systemic Akt2 deletion does not inhibit and exacerbates mammary tumorigenesis and metastasis, but cell-autonomous Akt2 deletion prevents breast cancer tumorigenesis by ErbB2. Elevated circulating insulin level induced by Akt2 systemic deletion hyperactivates tumor Akt, exacerbating ErbB2-mediated tumorigenesis, curbed by pharmacological reduction of the elevated insulin.


Assuntos
Neoplasias Mamárias Animais/enzimologia , Neoplasias Mamárias Animais/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Carcinogênese/patologia , Feminino , Deleção de Genes , Humanos , Insulina/metabolismo , Isoenzimas/metabolismo , Metástase Neoplásica , Neutrófilos/metabolismo , Receptor ErbB-2/metabolismo
3.
Nat Commun ; 9(1): 4504, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30374110

RESUMO

Many small-interfering (si)RNAs are toxic to cancer cells through a 6mer seed sequence (positions 2-7 of the guide strand). Here we performed an siRNA screen with all 4096 6mer seeds revealing a preference for guanine in positions 1 and 2 and a high overall G or C content in the seed of the most toxic siRNAs for four tested human and mouse cell lines. Toxicity of these siRNAs stems from targeting survival genes with C-rich 3'UTRs. The master tumor suppressor miRNA miR-34a-5p is toxic through such a G-rich 6mer seed and is upregulated in cells subjected to genotoxic stress. An analysis of all mature miRNAs suggests that during evolution most miRNAs evolved to avoid guanine at the 5' end of the 6mer seed sequence of the guide strand. In contrast, for certain tumor-suppressive miRNAs the guide strand contains a G-rich toxic 6mer seed, presumably to eliminate cancer cells.


Assuntos
Linhagem Celular Tumoral/efeitos dos fármacos , MicroRNAs/toxicidade , RNA Interferente Pequeno/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Marcação de Genes , Genes Essenciais/efeitos dos fármacos , Guanina , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Regiões não Traduzidas
4.
EMBO Rep ; 19(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29440125

RESUMO

Trinucleotide repeat (TNR) expansions in the genome cause a number of degenerative diseases. A prominent TNR expansion involves the triplet CAG in the huntingtin (HTT) gene responsible for Huntington's disease (HD). Pathology is caused by protein and RNA generated from the TNR regions including small siRNA-sized repeat fragments. An inverse correlation between the length of the repeats in HTT and cancer incidence has been reported for HD patients. We now show that siRNAs based on the CAG TNR are toxic to cancer cells by targeting genes that contain long reverse complementary TNRs in their open reading frames. Of the 60 siRNAs based on the different TNRs, the six members in the CAG/CUG family of related TNRs are the most toxic to both human and mouse cancer cells. siCAG/CUG TNR-based siRNAs induce cell death in vitro in all tested cancer cell lines and slow down tumor growth in a preclinical mouse model of ovarian cancer with no signs of toxicity to the mice. We propose to explore TNR-based siRNAs as a novel form of anticancer reagents.


Assuntos
Proteína Huntingtina/genética , Neoplasias/genética , RNA Interferente Pequeno/farmacologia , Repetições de Trinucleotídeos/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/antagonistas & inibidores , Doença de Huntington/genética , Doença de Huntington/patologia , Camundongos , Neoplasias/patologia , Neoplasias/terapia , Fases de Leitura Aberta , RNA Interferente Pequeno/genética , Expansão das Repetições de Trinucleotídeos/genética , Repetições de Trinucleotídeos/efeitos dos fármacos
5.
Trends Cancer ; 4(1): 10-19, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29413418

RESUMO

Off-target effects (OTEs) represent a significant caveat for RNAi caused by substantial complementarity between siRNAs and unintended mRNAs. We now discuss the existence of three types of seed-dependent OTEs (sOTEs). Type I involves unintended targeting through the guide strand seed of an siRNA. Type II is caused by the activity of the seed on the designated siRNA passenger strand when loaded into the RNA-induced silencing complex (RISC). Both type I and II sOTEs will elicit unpredictable cellular responses. By contrast, in sOTE type III the guide strand seed preferentially targets essential survival genes resulting in death induced by survival gene elimination (DISE). In this Opinion article, we discuss DISE as a consequence of RNAi that may preferentially affect cancer cells.


Assuntos
Proliferação de Células/genética , Neoplasias/genética , Complexo de Inativação Induzido por RNA/genética , Inativação Gênica , Humanos , Neoplasias/patologia , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
6.
Elife ; 62017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29063830

RESUMO

Over 80% of multiple-tested siRNAs and shRNAs targeting CD95 or CD95 ligand (CD95L) induce a form of cell death characterized by simultaneous activation of multiple cell death pathways preferentially killing transformed and cancer stem cells. We now show these si/shRNAs kill cancer cells through canonical RNAi by targeting the 3'UTR of critical survival genes in a unique form of off-target effect we call DISE (death induced by survival gene elimination). Drosha and Dicer-deficient cells, devoid of most miRNAs, are hypersensitive to DISE, suggesting cellular miRNAs protect cells from this form of cell death. By testing 4666 shRNAs derived from the CD95 and CD95L mRNA sequences and an unrelated control gene, Venus, we have identified many toxic sequences - most of them located in the open reading frame of CD95L. We propose that specific toxic RNAi-active sequences present in the genome can kill cancer cells.


Assuntos
Antineoplásicos/metabolismo , Morte Celular , Proteína Ligante Fas/antagonistas & inibidores , RNA Interferente Pequeno/metabolismo , Receptor fas/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Interferência de RNA
7.
Cell Rep ; 18(10): 2373-2386, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28273453

RESUMO

Stimulation of CD95/Fas drives and maintains cancer stem cells (CSCs). We now report that this involves activation of signal transducer and activator of transcription 1 (STAT1) and induction of STAT1-regulated genes and that this process is inhibited by active caspases. STAT1 is enriched in CSCs in cancer cell lines, patient-derived human breast cancer, and CD95high-expressing glioblastoma neurospheres. CD95 stimulation of cancer cells induced secretion of type I interferons (IFNs) that bind to type I IFN receptors, resulting in activation of Janus-activated kinases, activation of STAT1, and induction of a number of STAT1-regulated genes that are part of a gene signature recently linked to therapy resistance in five primary human cancers. Consequently, we identified type I IFNs as drivers of cancer stemness. Knockdown or knockout of STAT1 resulted in a strongly reduced ability of CD95L or type I IFN to increase cancer stemness. This identifies STAT1 as a key regulator of the CSC-inducing activity of CD95.


Assuntos
Interferon Tipo I/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fator de Transcrição STAT1/metabolismo , Receptor fas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Marcação por Isótopo , Fosforilação , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Regulação para Cima
8.
J Cell Biol ; 206(3): 367-76, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-25070955

RESUMO

The directed movement of cells is critical for numerous developmental and disease processes. A developmentally reiterated form of migration is radial intercalation; the process by which cells move in a direction orthogonal to the plane of the tissue from an inner layer to an outer layer. We use the radial intercalation of cells into the skin of Xenopus laevis embryos as a model to study directed cell migration within an epithelial tissue. We identify a novel function for both the microtubule-binding protein CLAMP and members of the microtubule-regulating Par complex during intercalation. Specifically, we show that Par3 and aPKC promote the apical positioning of centrioles, whereas CLAMP stabilizes microtubules along the axis of migration. We propose a model in which the Par complex defines the orientation of apical migration during intercalation and in which subcellular localization of CLAMP promotes the establishment of an axis of microtubule stability required for the active migration of cells into the outer epithelium.


Assuntos
Movimento Celular , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Polaridade Celular , Centríolos/metabolismo , Células Epidérmicas , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteína Quinase C/metabolismo , Estabilidade Proteica , Transporte Proteico , Xenopus laevis
9.
Sensors (Basel) ; 13(4): 4811-40, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23580051

RESUMO

The evolution of 1st to 3rd generation electrochemical biosensors reflects a simplification and enhancement of the transduction pathway. However, in recent years, modification of the transducer with nanomaterials has become increasingly studied and imparts many advantages. The sensitivity and overall performance of enzymatic biosensors has improved tremendously as a result of incorporating nanomaterials in their fabrication. Given the unique and favorable qualities of gold nanoparticles, graphene and carbon nanotubes as applied to electrochemical biosensors, a consolidated survey of the different methods of nanomaterial immobilization on transducer surfaces and enzyme immobilization on these species is beneficial and timely. This review encompasses modification of enzymatic biosensors with gold nanoparticles, carbon nanotubes, and graphene.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Eletroquímica/instrumentação , Eletroquímica/métodos , Enzimas Imobilizadas/metabolismo , Nanoestruturas/química , Ouro/química , Grafite/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...