Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(35): 14488-14495, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37606171

RESUMO

A series of ruthenium nanoparticles (Ru·MIC) stabilized with different mesoionic 1,2,3-triazolylidene (MIC) ligands were prepared by decomposition of the Ru(COD)(COT) (COD = 1,5-cyclooctadiene; COT = 1,3,5-cyclooctatriene) precursor with H2 (3 bar) in the presence of substoichiometric amounts of the stabilizer (0.1-0.2 equiv.). Small and monodisperse nanoparticles exhibiting mean sizes between 1.1 and 1.2 nm were obtained, whose characterization was carried out by means of transmission electron microscopy (TEM), including high resolution TEM (HRTEM), inductively coupled plasma (ICP) analysis and X-ray photoelectron spectroscopy (XPS). In particular, XPS measurements confirmed the presence of MIC ligands on the surfaces of the nanoparticles. The Ru·MIC nanoparticles were used in the isotopic H/D exchange of different hydrosilanes, hydroboranes, hydrogermananes and hydrostannanes using deuterium gas under mild conditions (1.0 mol% Ru, 1 bar D2, 55 °C). Selective labelling of the E-H (E = B, Si, Ge, Sn) bond in these derivatives, with high levels of deuterium incorporation, was observed.

2.
Inorg Chem ; 59(7): 4328-4339, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32157877

RESUMO

A series of silver amidinate complexes has been studied both experimentally and theoretically, in order to investigate the role of the precursor complex in the control of the synthesis of silver nanoparticles via an organometallic route. The replacement of the methyl substituent of the central carbon atom of the amidinate anion by a n-butyl group allows for the crystallization of the tetranuclear silver amidinate complex 3 instead of a mixture of di- and trinuclear silver amidinate complexes 1 and 2, as obtained with a methyl substituent. The relative stabilities and dissociation schemes of various isomeric arrangements of silver atoms in 3 are investigated at the computational DFT level of calculation, depending on the substituents of the amidinate ligand. The tetranuclear silver amidinate complex 4, exhibiting a diamondlike arrangement of the four silver atoms, is also considered. Ag-N bonds and argentophilic Ag-Ag interactions are finely characterized using ELF and QTAIM topological analyses and compared over the series of the related di-, tri-, and tetranuclear silver amidinate complexes 1-4. In contrast to the Ag-N dative bonds very similar over the series, argentophilic Ag-Ag interactions of various strengths and covalence degree are characterized for complexes 1-4. This gives insight into the role of the amidinate substituents on the nuclearity and intramolecular chemical bonding of the silver amidinate precursors, required for the synthesis of dedicated AgNPs with chemically well defined surfaces.

3.
Langmuir ; 35(44): 14194-14202, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31550887

RESUMO

Access to removable nanocomposite electrodes for electrosensing of pollutants is of great importance. However, the preparation of reproducible and reliable carbon electrodes decorated with metallic nanoparticles, a prerequisite for trustworthy devices, remains a challenge. Here we describe an innovative and easy method to prepare such electrodes. These latter are silicon-coated with a thin carbon film on which controlled silver nanostructures are grafted. Different silver nanostructures and surface coverage of the carbon electrode (16, 36, 51, and 67%) can be obtained through a careful control of the time of the hydrogenolysis of the N-N' isopropyl butylamidinate silver organometallic precursor (t = 1, 5, 15, and 60 min, respectively). Importantly, all nanocomposite surfaces are efficient for the electrodetection of 4-nitrophenol with a remarkable decrease of the overpotential of the reduction of such molecule up to 330 mV. The surfaces are characterized by atomic force microscopy, grazing incidence X-ray diffraction, scanning electronic microscopy, and Raman spectroscopy. Furthermore, surface-enhanced Raman scattering effect is also observed. The exaltation of the Raman intensity is proportional to the surface coverage of the electrode; the number of hot spots increases with the surface coverage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA