Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37764024

RESUMO

Hippophae rhamnoides L. leaves possess a remarkable amount of polyphenols that could serve as a natural remedy in various applications. In comparison, numerous techniques, such as conventional and high-pressure techniques, are available for extracting the bioactive fractions from sea buckthorn leaves (SBL). However, enzyme-assisted extraction (EAE) of SBL has not been comprehensively studied. The aim of this study was to optimize critical EAE parameters of SBL using the cellulolytic enzyme complex, Viscozyme L, to obtain a high-yield extract with a high concentration of bioactive compounds. In order to determine the optimal conditions for EAE, the study employed a central composite design and response surface methodology to analyze the effects of four independent factors (pH, temperature, extraction time, and enzyme concentration) on two different responses. Our findings indicated that under optimal conditions (3:15 h extraction, temperature 45 °C, pH 4.9, and 1% Viscozyme L v/w of leaves DW), EAE yielded 28.90 g/100 g DW of the water-soluble fraction. Furthermore, the EAE-optimized liquid extract was continuously fermented using an ancient fermentation starter, Tibetan kefir grains, which possess lactic acid bacteria (LAB) and have significant potential for use in biopreservation. Interestingly, the results indicated various potential prebiotic characteristics of LAB. Additionally, alterations in the cell wall morphology of the SBL residue after EAE were examined using scanning electron microscopy (SEM). This study significantly optimized EAE parameters for sea buckthorn leaves, providing a promising natural source of bioactive compounds for various applications, such as nutraceuticals, functional foods, and high-value products.

2.
Molecules ; 28(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375144

RESUMO

In recent years, much attention has been devoted to Vaccinium L. berries because of their substantial potential to be adapted for the development of innovative food and pharmaceutical applications. The accumulation of plant secondary metabolites is extremely dependent on climate and other environmental conditions. In order to increase the reliability of the findings, this study was conducted with samples collected in four regions in Northern Europe (Norway, Finland, Latvia, and Lithuania) and analyzed in a single laboratory using a standardized methodology. The study aims to provide a comprehensive understanding of the nutritional (biologically active compounds (phenolic (477-775 mg/100 g fw), anthocyanins (20-57 mg/100 g fw), pro-anthocyanidins (condensed tannins (141-269 mg/100 g fw)) and antioxidant activity in different systems (ABTS•+, FRAP). Physicochemical properties (acidity, soluble solids, color) of wild Vaccinium vitis-idaea L. were also evaluated. The results may contribute to the development of functional foods and nutraceuticals with potential health benefits in the future. To the best of our knowledge, this is the first comprehensive report on the evaluation of the biologically active compounds of wild lingonberries from different Northern European countries based on one laboratory's validated methods. The results indicated a geomorphological influence on the biochemical and physicochemical composition of wild Vaccinium vitis-idaea L. depending on their place of geographical origin.


Assuntos
Vaccinium vitis-Idaea , Vaccinium vitis-Idaea/química , Antocianinas/análise , Reprodutibilidade dos Testes , Extratos Vegetais/química , Antioxidantes/farmacologia , Frutas/química
3.
Molecules ; 27(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431804

RESUMO

Silver nanoparticles (AgNPs) biosynthesized using aqueous medical plant extracts as reducing and capping agents show multiple applicability for bacterial problems. The aim of this study was to expand the boundaries on AgNPs using a novel, low-toxicity, and cost-effective alternative and green approach to the biosynthesis of metallic NPs using Calendula officinalis (Calendula) and Hyssopus officinalis (Hyssopus) aqueous extracts. The formation of AgNPs was confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) techniques. The effectiveness of biosynthesized AgNPs in quenching free radicals and inhibiting the growth of Gram-positive and Gram-negative microorganisms was supported by in vitro antioxidant activity assay methods and using the Kirby-Bauer disk diffusion susceptibility test, respectively. The elucidated antimicrobial and antioxidative activities of medical plant extracts were compared with data from the engineered biosynthetic AgNPs. The antimicrobial effect of engineered AgNPs against selected test cultures was found to be substantially stronger than for plant extracts used for their synthesis. The analysis of AgNPs by TEM revealed the presence of spherical-shaped nano-objects. The size distribution of AgNPs was found to be plant-type-dependent. The smaller AgNPs were obtained with Hyssopus extract (with a size range of 16.8 ± 5.8 nm compared to 35.7 ± 4.8 nm from Calendula AgNPs). The AgNPs' presumably inherited biological functions of Hyssopus and Calendula medical plants can provide a platform to combat pathogenic bacteria in the era of multi-drug resistance.


Assuntos
Calendula , Nanopartículas Metálicas , Antioxidantes/farmacologia , Antioxidantes/química , Prata/química , Hyssopus , Nanopartículas Metálicas/química , Antibacterianos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Bactérias
4.
Plants (Basel) ; 11(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890467

RESUMO

Enzyme-assisted extraction is a valuable tool for mild and environmentally-friendly extraction conditions to release bioactive compounds and sugars, essential for silver nanoparticle (AgNP) green synthesis as capping and reducing agents. In this research, plant and fungal kingdoms were selected to obtain the enzyme-assisted extracts, using green synthesized AgNPs. For the synthesis, pseudo-cereal Fagopyrum esculentum (F. esculentum) and lichen Certaria islandica (C. islandica) extracts were used as environmentally-friendly agents under heating in an aqueous solution. Raw and enzyme-assisted extracts of AgNPs were characterized by physicochemical, phytochemical, and morphological characteristics through scanning and transmission electron microscopy (SEM and TEM), as well as Fourier transform infrared spectroscopy (FTIR). The synthesized nanoparticles were spherical in shape and well dispersed, with average sizes ranging from 10 to 50 nm. This study determined the total phenolic content (TPC) and in vitro antioxidant activity in both materials by applying standard methods. The results showed that TPC, ABTS•+, FRAP, and DPPH• radical scavenging activities varied greatly in samples. The AgNPs derived from enzymatic hydrolyzed aqueous extracts C. islandica and F. esculentum exhibited higher antibacterial activity against the tested bacterial pathogens than their respective crude extracts. Results indicate that the extracts' biomolecules covering the AgNPs may enhance the biological activity of silver nanoparticles and enzyme assistance as a sustainable additive to technological processes to achieve higher yields and necessary media components.

5.
Foods ; 11(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35885298

RESUMO

Avena sativa (A. sativa) oats have recently made a comeback as suitable alternative raw materials for dairy substitutes due to their functional properties. Amylolytic and cellulolytic enzyme-assisted modifications of oats produce new products that are more appealing to consumers. However, the biochemical and functional alteration of products and extracts requires careful selection of raw materials, enzyme cocktails, and technological aspects. This study compares the biochemical composition of different A. sativa enzyme-assisted water extracts and evaluates their microbial growth using spontaneous fermentation and the antimicrobial properties of the ferment extracts. Fibre content, total phenolic content, and antioxidant activity were evaluated using traditional methodologies. The degradation of A. sativa flour was captured using scanning electron microscopy (SEM); moreover, sugar and oligosaccharide alteration were identified using HPLC and HPLC-SEC after INFOGEST in vitro digestion (IVD). Additionally, taste differentiation was performed using an electronic tongue with principal component analysis. The oat liquid extracts were continuously fermented using two ancient fermentation starters, birch sap and Tibetan kefir grains. Both starters contain lactic acid bacteria (LAB), which has major potential for use in bio-preservation. In fermented extracts, antimicrobial properties against Gram-positive Staphylococcus aureus and group A streptococci as well as Gram-negative opportunistic bacteria such as Escherichia coli and Pseudomonas aeruginosa were also determined. SEM images confirmed the successful incorporation of enzymes into the oat flour. The results indicate that using enzyme-assisted extraction significantly increased TPC and antioxidant activity in both the extract and residues. Additionally, carbohydrates with a molecular mass (MM) of over 70,000 kDa were reduced to 7000 kDa and lower after the incorporation of amylolytic and cellulolytic enzymes. The MM impacted the variation in microbial fermentation, which demonstrated favourable antimicrobial properties. The results demonstrated promising applications for developing functional products and components using bioprocessing as an innovative tool.

6.
Plants (Basel) ; 11(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35807656

RESUMO

Plant primary and secondary metabolites are a significant source for many applications, including extractions of functional components, green synthesis development, and producing higher-added value products. However, in the variety of botanicals, Aralia cordata Thunb. plant is getting attention for its similarity to ginseng. This study comprehensively examines the biochemical and phytochemical profiles of different A. cordata morphological parts: root, stem, leaf, inflorescence, berry, and seed. Additionally, the establishment of total phenolic content and quantitative analysis of powerful antioxidants such as chlorophyll, carotenoids (zeaxanthin, lutein, and ß-carotene), proanthocyanidins, and anthocyanins content were evaluated. The results indicated that A. cordata stem and berries are an excellent source of anthocyanins in the range from 18.27 to 78.54 mg/100 g DW. Meanwhile, the antioxidant activity was evaluated using three different methods based on the capacity to scavenge: DPPH• scavenging capacity, ABTS•+ radical cation assay, and ferric reducing antioxidant power (FRAP) and ranged from 27 to 168 µmol TE/g DW, 8 to 117 µmol TE/g DW, and 18 to 157 µmol TE/g DW, respectively. This study proposes a novel competitive plant for many health-promoting applications in the nutraceutical, pharmaceutical, material, and food industries.

7.
Plants (Basel) ; 11(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35448813

RESUMO

Silver nanoparticles (AgNPs) biosynthesized using plant extracts as reducing and capping agents show multiple possibilities for solving various biological problems. The aim of this study was to expand the boundaries of AgNPs using a novel low toxicity and production cost phytochemical method for the biosynthesis of nanoparticles from Eucalyptus globulus and Salvia officinalis aqueous leaf extracts. Biosynthesized AgNPs were characterized by various methods (ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared (FTIR) spectroscopy with horizontal attenuated total reflectance (HART), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS)). The determined antioxidative and antimicrobial activity of plant extracts was compared with the activity of the AgNPs. The UV-vis spectral analysis demonstrated the absorption peaks at 408 and 438 nm, which confirmed the synthesis of stable AgNPs from E. globulus and S. officinalis, respectively. FTIR-HART results suggested strong capping of phytochemicals on AgNPs. TEM results show mainly spherical-shaped AgNPs, whose size distribution depends on the plant leaf extract type; the smaller AgNPs were obtained with E. globulus extract (with size range of 17.5 ± 5.89 nm compared to 34.3 ± 7.76 nm from S. officinalis AgNPs). The in vitro antioxidant activity evaluated by radical scavenging assays and the reduction activity method clearly demonstrated that both the plant extracts and AgNPs showed prominent antioxidant properties. In addition, AgNPs show much stronger antimicrobial activity against broad spectrum of Gram-negative and Gram-positive bacteria strains than the plant extracts used for their synthesis.

8.
Molecules ; 26(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34443353

RESUMO

Sea buckthorn (Hippophae rhamnoides L. (HR)) leaf powders are the underutilized, promising resource of valuable compounds. Genotype and processing methods are key factors in the preparation of homogenous, stable, and quantified ingredients. The aim of this study was to evaluate the phenolic, triterpenic, antioxidant profiles, carotenoid and chlorophyll content, and chromatic characteristics of convection-dried and freeze-dried HR leaf powders obtained from ten different female cultivars, namely 'Avgustinka', 'Botaniceskaja Liubitelskaja', 'Botaniceskaja', 'Hibrid Percika', 'Julia', 'Nivelena', 'Otradnaja', 'Podarok Sadu', 'Trofimovskaja', and 'Vorobjovskaja'. The chromatic characteristics were determined using the CIELAB scale. The phytochemical profiles were determined using HPLC-PDA (high performance liquid chromatography with photodiode array detector) analysis; spectrophotometric assays and antioxidant activities were investigated using ABTS (2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) and FRAP (ferric ion reducing antioxidant power) assays. The sea buckthorn leaf powders had a yellowish-green appearance. The drying mode had a significant impact on the total antioxidant activity, chlorophyll content, and chromatic characteristics of the samples; the freeze-dried samples were superior in antioxidant activity, chlorophyll, carotenoid content, and chromatic profile, compared to convection-dried leaf powder samples. The determined triterpenic and phenolic profiles strongly depend on the cultivar, and the drying technique had no impact on qualitative and quantitative composition. Catechin, epigallocatechin, procyanidin B3, ursolic acid, α-amyrin, and ß-sitosterol could be used as quantitative markers in the phenolic and triterpenic profiles. The cultivars 'Avgustinka', 'Nivelena', and 'Botaniceskaja' were superior to other tested cultivars, with the phytochemical composition and antioxidant activity.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Dessecação , Hippophae/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Pós
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...