Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e16978, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436015

RESUMO

Extremes in organismal size have broad interest in ecology and evolution because organismal size dictates many traits of an organism's biology. There is particular fascination with identifying upper size extremes in the largest vertebrates, given the challenges and difficulties of measuring extant and extinct candidates for the largest animal of all time, such as whales, terrestrial non-avian dinosaurs, and extinct marine reptiles. The discovery of Perucetus colossus, a giant basilosaurid whale from the Eocene of Peru, challenged many assumptions about organismal extremes based on reconstructions of its body weight that exceeded reported values for blue whales (Balaenoptera musculus). Here we present an examination of a series of factors and methodological approaches to assess reconstructing body weight in Perucetus, including: data sources from large extant cetaceans; fitting published body mass estimates to body outlines; testing the assumption of isometry between skeletal and body masses, even with extrapolation; examining the role of pachyostosis in body mass reconstructions; addressing method-dependent error rates; and comparing Perucetus with known physiological and ecological limits for living whales, and Eocene oceanic productivity. We conclude that Perucetus did not exceed the body mass of today's blue whales. Depending on assumptions and methods, we estimate that Perucetus weighed 60-70 tons assuming a length 17 m. We calculated larger estimates potentially as much as 98-114 tons at 20 m in length, which is far less than the direct records of blue whale weights, or the 270 ton estimates that we calculated for body weights of the largest blue whales measured by length.


Assuntos
Balaenoptera , Dinossauros , Animais , Fósseis , Cetáceos , Peso Corporal
2.
R Soc Open Sci ; 10(9): 230392, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37771965

RESUMO

The ecological state of the Persian or Arabian Gulf (hereafter 'Gulf') is in sharp decline. Calls for comprehensive ecosystem-based management approaches and transboundary conservation have gone largely unanswered, despite mounting marine threats made worse by climate change. The region's long-standing political tensions add additional complexity, especially now as some Gulf countries will soon adopt ambitious goals to protect their marine environments as part of new global environmental commitments. The recent interest in global commitments comes at a time when diplomatic relations among all Gulf countries are improving. There is a window of opportunity for Gulf countries to meet global marine biodiversity conservation commitments, but only if scientists engage in peer-to-peer diplomacy to build trust, share knowledge and strategize marine conservation options across boundaries. The Gulf region needs more ocean diplomacy and coordination; just as critically, it needs actors at its science-policy interface to find better ways of adapting cooperative models to fit its unique marine environment, political context and culture. We propose a practical agenda for scientist-led diplomacy in the short term and lines of research from which to draw (e.g. co-production, knowledge exchange) to better design future science diplomacy practices and processes suited to the Gulf's setting.

3.
R Soc Open Sci ; 10(6): 221648, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325600

RESUMO

Desmostylus is an extinct marine mammal genus that belongs to Desmostylia, a clade of extinct herbivorous mammals. While desmostylian remains are widely reported from Paleogene and Neogene marine strata of the North Pacific Rim, occurrences of the genus Desmostylus are almost entirely limited to middle Miocene strata, with only a few early Miocene records from Japan. Here we report a Desmostylus tooth from the earliest Miocene (Aquitanian) Skooner Gulch Formation in northern California, USA. This specimen exhibits cuspules around the crown, a primitive trait of the subfamily Desmostylidae, as seen in more basal branching desmostylid taxa such as Cornwallius and Ounalashkastylus, but with a high tooth crown and thickened enamel. The specimen is also diagnostically different from all other desmostylid genera, such as Cornwallius, and Ounalashklastylus. The Aquitanian age of the Skooner Gulch Formation implies that the distinctive tooth morphology of Desmostylus has persisted, largely unchanged, for more than 15 million years and that desmostylids possibly originated in western North America.

4.
R Soc Open Sci ; 10(5): 230134, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206962

RESUMO

The 'early modern' (Renaissance) workshop was predicated on the idea that informal, open-ended cooperation enables participants to experience difference and develop new insights, which can lead to new ways of thinking and doing. This paper presents the insights that emerged from a conversation event that brought wide-ranging voices together from different domains in science, and across the arts and industry, to consider science leadership as we look to the future in a time of interlocking crises. The core theme identified was a need to regain creativity in science; in the methods of scientific endeavours, in the way science is produced and communicated, and in how science is experienced in society. Three key challenges for re-establishing a culture of creativity in science emerged: (i) how scientists communicate what science is and what it is for, (ii) what scientists value, and (iii) how scientists create and co-create science with and for society. Furthermore, the value of open-ended and ongoing conversation between different perspectives as a means of achieving this culture was identified and demonstrated.

5.
Curr Biol ; 33(10): 2111-2119.e4, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37116482

RESUMO

Many marine mammal populations are recovering after long eras of exploitation.1,2 To what degree density-dependent body size declines in recovering species reflect a general response to increased resource competition is unknown. We examined skull size (as a proxy for body size), skull morphology, and foraging dynamics of the top marine predator, the California sea lion (Zalophus californianus), which have been steadily increasing over the last few decades and have approached or reached their carrying capacity in southern California.3 We show that, contrary to predictions, male California sea lions increased rather than decreased their average body size over a 46-year (1962-2008) recovery period. Larger males had proportionally longer oral cavities and more powerful bite strength, and their foraging niche expanded. Females between 1983 and 2007 maintained stable skull dimensions, but their isotopic niche was broader than contemporary males. Increased male body size is compatible with an intensification of density-dependent sexual selection for larger and more competitive individuals concurrent with an expanding foraging niche. High foraging variability among females would explain their body size stability during decades of population recovery. We demonstrate that body size reduction is not the universal response to population recovery in marine mammals and show that selective ecological dynamics could contribute to protecting populations against the increased density-dependent intraspecific competition. However, prey shifts associated with climate change will likely prevent California sea lions (and other marine mammals) from attaining these ecological dynamics, augmenting their vulnerability to resource competition and diminishing their capacity to overcome it.


Assuntos
Caniformia , Leões-Marinhos , Animais , Feminino , Masculino , Leões-Marinhos/fisiologia , Comportamento Alimentar , Cetáceos , Tamanho Corporal
6.
Biol Lett ; 19(3): 20220534, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36883314

RESUMO

Body size and feeding morphology influence how animals partition themselves within communities. We tested the relationships among sex, body size, skull morphology and foraging in sympatric otariids (eared seals) from the eastern North Pacific Ocean, the most diverse otariid community in the world. We recorded skull measurements and stable carbon (δ13C) and nitrogen (δ15N) isotope values (proxies for foraging) from museum specimens in four sympatric species: California sea lions (Zalophus californianus), Steller sea lions (Eumetopias jubatus), northern fur seals (Callorhinus ursinus) and Guadalupe fur seals (Arctocephalus townsendi). Species and sexes had statistical differences in size, skull morphology and foraging significantly affecting the δ13C values. Sea lions had higher δ13C values than fur seals, and males of all species had higher values than females. The δ15N values were correlated with species and feeding morphology; individuals with stronger bite forces had higher δ15N values. We also found a significant community-wide correlation between skull length (indicator of body length), and foraging, with larger individuals having nearshore habitat preferences, and consuming higher trophic level prey than smaller individuals. Still, there was no consistent association between these traits at the intraspecific level, indicating that other factors might account for foraging variability.


Assuntos
Otárias , Leões-Marinhos , Animais , Feminino , Masculino , Tamanho Corporal , Cabeça , Crânio
7.
Curr Biol ; 32(24): 5398-5405.e3, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36538877

RESUMO

Marine tetrapods occupy important roles in modern marine ecosystems and often gather in large aggregations driven by patchy prey distribution,1,2 social or reproductive behaviors,3,4 or oceanographic factors.5 Here, we show that similar grouping behaviors evolved in an early marine tetrapod lineage, documented by dozens of specimens of the giant ichthyosaur Shonisaurus in the Luning Formation in West Union Canyon, Nevada, USA.6,7 A concentration of at least seven skeletons closely preserved on a single bedding plane received the bulk of previous attention. However, many more specimens are preserved across ∼106 square meters and ∼200 stratigraphic meters of outcrop representing an estimated >105-6 years. Unlike other marine-tetrapod-rich deposits, this assemblage is essentially monotaxic; other vertebrate fossils are exceptionally scarce. Large individuals are disproportionately abundant, with the exception of multiple neonatal or embryonic specimens, indicating an unusual demographic composition apparently lacking intermediate-sized juveniles or subadults. Combined with geological evidence, our data suggest that dense aggregations of Shonisaurus inhabited this moderately deep, low-diversity, tropical marine environment for millennia during the latest Carnian Stage of the Late Triassic Period (237-227 Ma). Thus, philopatric grouping behavior in marine tetrapods, potentially linked to reproductive activity, has an antiquity of at least 230 million years.


Assuntos
Ecossistema , Fósseis , Humanos , Recém-Nascido , Filogenia , Oceanografia , Evolução Biológica
8.
PeerJ ; 10: e14075, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275454

RESUMO

One of the largest and least documented populations of dugongs (Dugong dugon) resides in the coastal waters of the United Arab Emirates, and waters surrounding Saudi Arabia, Bahrain, and Qatar. The archaeological record of dugongs in the Gulf Region is abundant, but little is known about their fossil record in the region. Here we report an isolated sirenian rib fragment from the Futaisi Member of the Fuwayrit Formation near the town of Al Ruwais, in northern Qatar. The Fuwayrit Formation is a marine Pleistocene deposit exposed onshore in Qatar and the United Arab Emirates. Based on the correlative dating of the basal Futaisi Member with other onshore platforms, the rib fragment is approximately 125 ka. We propose that this isolated rib (likely the first rib from the right side) belongs to Dugongidae, with strong similarities to extant Dugong. We cannot, however, eliminate the possibility that it belongs to an extinct taxon, especially given its similarities with other fossil dugongid material from both Qatar and elsewhere in the world. Aside from reflecting the presence of Gulf seagrass communities in the Pleistocene, this occurrence also suggests that different (and potentially multiple) lineages of sirenians inhabited the Gulf Region in the geologic past.


Assuntos
Dugong , Fósseis , Animais , Feminino , Barein , Catar , Sirênios
9.
Sci Rep ; 12(1): 14246, 2022 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-35989343

RESUMO

Desmostylia is an extinct clade of marine mammals with two major sub-clades, Desmostylidae and Paleoparadoxiidae, known from Oligocene to Miocene strata of the North Pacific coastline. Within Paleoparadoxiidae, three genera have been identified: Archaeoparadoxia, Paleoparadoxia, and Neoparadoxia. The latter taxon is the geochronologically youngest palaeoparadoxiid and Neoparadoxia is characterized by a comparatively larger body size, although it is known only from a few specimens within a short temporal and geographic range. Here we report the discovery of an isolated tooth, which we identify as Neoparadoxia cf. N. cecilialina, constituting only the second individual specimen of Neoparadoxia with preserved dentition yet reported. This specimen was collected near Corona, California, USA, and we attribute it to the "Topanga" Formation, extending the geographic range of this taxon in Southern California. While the exact geographic locality was not recorded when it was collected in 1913, we establish two potential localities based on associated hand-written museum label and new stratigraphic information. Although initially identified as Desmostylus hesperus, this specimen of Neoparadoxia was collected 10 years before the first named paleoparadoxiid from Japan. We expect that description of more complete desmostylian material from elsewhere in Southern California will clarify the taxonomic richness and paleoecological role of this clade in Cenozoic marine mammal assemblages.


Assuntos
Caniformia , Animais , Tamanho Corporal , Japão , Filogenia
10.
Sci Rep ; 12(1): 11448, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794235

RESUMO

Today's mysticetes filter-feed using baleen, a novel integumentary structure with no apparent homolog in any living mammal. The origins of filter-feeding and baleen can be informed by the fossil record, including rare instances of soft tissue preservation of baleen and also by potential osteological correlates of baleen. Lateral palatal foramina on the roof of the mouth have been proposed as potential osteological correlates of baleen and their presence in some tooth-bearing stem mysticetes has led to the hypothesis that these early mysticetes possessed both teeth and incipient baleen. Here, we test this hypothesis by examining lateral palatal foramina in both filter-feeding and non-filter-feeding cetaceans, including crown and stem odontocetes and in stem cetaceans (or archaeocetes). We also confirm the presence of lateral palatal foramina in 61 species of terrestrial artiodactyls. CT scanning demonstrates consistent internal morphology across all observed taxa, suggesting that the lateral palatal foramina observed in extant mysticetes are homologous to those of terrestrial artiodactyls. The presence of lateral palatal foramina in terrestrial artiodactyls and non-filter-feeding whales (odontocetes and archaeocetes) suggests that these structures are not unique predictors for the presence of baleen in fossil whales; instead, these structures are more probably associated with gingiva or other oral tissue.


Assuntos
Fósseis , Dente , Animais , Evolução Biológica , Arcada Osseodentária/anatomia & histologia , Dente/anatomia & histologia , Baleias
11.
R Soc Open Sci ; 9(7): 220441, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35875472

RESUMO

Skeletal remains and historical accounts indicate that grey whales (Eschrichtius robustus) existed in the North Atlantic Ocean from the Pleistocene into the seventeenth century. Fossil and sub-fossil occurrences in this basin are rare, distributed from the east coast of the United States to Iceland and Europe. Here, we report an incomplete skeleton of a Holocene grey whale from Pender County, North Carolina, USA. This specimen represents a physically immature individual and is the most complete North Atlantic grey whale specimen reported to date. It comprises 42 cranial and postcranial elements, including the cranium, parts of the rostrum, both mandibles, both scapulae, humeri, radii and ulnae, most of the vertebral column anterior to the lumbar region and numerous ribs. Its provenance near the inlet of a large estuary is consistent with previous findings from the southeastern USA and parallels the species' habitat use in Baja California breeding and calving grounds in the North Pacific Ocean. Radiocarbon dating indicates an age of 827 ± 172 years before present. Cut marks on multiple skeletal elements indicate that the animal was butchered, suggesting some level of human exploitation of the species in the southeastern USA in the twelfth century, approximately 500 years prior to its extirpation in the North Atlantic.

12.
Sci Adv ; 8(25): eadd2674, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35731872

RESUMO

Extinct megatooth sharks were globally distributed and contributed to ocean food chains that were potentially one to two steps longer than any food chain today.

13.
Science ; 374(6575): 1554-1555, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34941421

RESUMO

A whale-sized ichthyosaur shows how fast these reptiles evolved.


Assuntos
Oceanos e Mares
14.
Nature ; 599(7883): 85-90, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34732868

RESUMO

Baleen whales influence their ecosystems through immense prey consumption and nutrient recycling1-3. It is difficult to accurately gauge the magnitude of their current or historic ecosystem role without measuring feeding rates and prey consumed. To date, prey consumption of the largest species has been estimated using metabolic models3-9 based on extrapolations that lack empirical validation. Here, we used tags deployed on seven baleen whale (Mysticeti) species (n = 321 tag deployments) in conjunction with acoustic measurements of prey density to calculate prey consumption at daily to annual scales from the Atlantic, Pacific, and Southern Oceans. Our results suggest that previous studies3-9 have underestimated baleen whale prey consumption by threefold or more in some ecosystems. In the Southern Ocean alone, we calculate that pre-whaling populations of mysticetes annually consumed 430 million tonnes of Antarctic krill (Euphausia superba), twice the current estimated total biomass of E. superba10, and more than twice the global catch of marine fisheries today11. Larger whale populations may have supported higher productivity in large marine regions through enhanced nutrient recycling: our findings suggest mysticetes recycled 1.2 × 104 tonnes iron yr-1 in the Southern Ocean before whaling compared to 1.2 × 103 tonnes iron yr-1 recycled by whales today. The recovery of baleen whales and their nutrient recycling services2,3,7 could augment productivity and restore ecosystem function lost during 20th century whaling12,13.


Assuntos
Ingestão de Alimentos , Comportamento Predatório , Baleias/fisiologia , Animais , Regiões Antárticas , Oceano Atlântico , Biomassa , Euphausiacea , Cadeia Alimentar , Ferro/metabolismo , Oceano Pacífico , Baleias/metabolismo
15.
PeerJ ; 9: e11890, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395101

RESUMO

Living baleen whales (mysticetes) are bulk filter feeders that use keratinous baleen plates to filter food from prey laden water. Extant mysticetes are born entirely edentulous, though they possess tooth buds early in ontogeny, a trait inherited from toothed ancestors. The mandibles of extant baleen whales have neither teeth nor baleen; teeth are resorbed in utero and baleen grows only on the palate. The mandibles of extant baleen whales also preserve a series of foramina and associated sulci that collectively form an elongated trough, called the alveolar groove. Despite this name, it remains unclear if the alveolar groove of edentulous mysticetes and the dental structures of toothed mammals are homologous. Here, we describe and quantify the anatomical diversity of these structures across extant mysticetes and compare their variable morphologies across living taxonomic groups (i.e., Balaenidae, Neobalaenidae, Eschrichtiidae, and Balaenopteridae). Although we found broad variability across taxonomic groups for the alveolar groove length, occupying approximately 60-80 percent of the mandible's total curvilinear length (CLL) across all taxa, the relictual alveolar foramen showed distinct patterns, ranging between 15-25% CLL in balaenids, while ranging between 3-12% CLL in balaenopterids. This variability and the morphological patterning along the body of the mandible is consistent with the hypothesis that the foramina underlying the alveolar groove reflect relictual alveoli. These findings also lay the groundwork for future histological studies to examine the contents of these foramina and clarify their potential role in the feeding process.

16.
Science ; 372(6546): 1036-1037, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34083472

Assuntos
Tubarões , Animais
17.
PeerJ ; 9: e10882, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33604200

RESUMO

The history of cetaceans demonstrates dramatic macroevolutionary changes that have aided their transformation from terrestrial to obligate aquatic mammals. Their fossil record shows extensive anatomical modifications that facilitate life in a marine environment. To better understand the constraints on this transition, we examined the physical dimensions of the bony auditory complex, in relation to body size, for both living and extinct cetaceans. We compared the dimensions of the tympanic bulla, a conch-shaped ear bone unique to cetaceans, with bizygomatic width-a proxy for cetacean body size. Our results demonstrate that cetacean ears scale non-isometrically with body size, with about 70% of variation explained by increases in bizygomatic width. Our results, which encompass the breadth of the whale fossil record, size diversity, and taxonomic distribution, suggest that functional auditory capacity is constrained by congruent factors related to cranial morphology, as opposed to allometrically scaling with body size.

18.
PeerJ ; 8: e9665, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32953258

RESUMO

Elephant seals (Mirounga spp.) are the largest living pinnipeds, and the spatial scales of their ecology, with dives over 1 km in depth and foraging trips over 10,000 km long, are unrivalled by their near relatives. Here we report the discovery of an incomplete Holocene age Southern elephant seal (M. leonina) rostrum from Indiana, USA. The surviving material are two casts of the original specimen, which was collected in a construction excavation close to the Wabash River near Lafayette, Indiana. The original specimen was mostly destroyed for radiometric dating analyses in the 1970s, which resulted in an age of 1,260 ± 90 years before the present. The existence of sediments in the original specimen suggests some type of post depositional fluvial transportation. The prevalent evidence suggests that this male Southern elephant seal crossed the equator and the Gulf of Mexico, and then entered the Mississippi River system, stranding far upriver in Indiana or adjacent areas, similar to other reported examples of lost marine mammals in freshwater systems. Based on potential cut marks, we cannot exclude human-mediated transportation or scavenging by Indigenous peoples as a contributing factor of this occurrence. The material reported here represents by far the northernmost occurrence of a Southern elephant seal in the Northern Hemisphere ever recorded. The unusual occurrence of a top marine predator >1,000 km from the closest marine effluent as a potential extreme case of dispersal emphasizes how marine invasions of freshwater systems have happened frequently through historical (and likely geological) time.

19.
R Soc Open Sci ; 6(11): 191394, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31827869

RESUMO

The fossil record of pinnipeds (seals, fur seals and walruses) is globally distributed, spanning from the late Oligocene to the Holocene. This record shows a complex evolutionary history that could not otherwise be inferred from their extant relatives, including multiple radiations and iterative ecomorphological specializations among different lineages, many of which are extinct. The fossil record of pinnipeds is not uniformly represented in space and time, however, leaving some gaps in our knowledge. We performed a historiographical investigation of the published fossil record of pinnipeds based on the information available in the Paleobiology Database, with the aim to broadly characterize and evaluate it from a taxonomic, geographical and temporal perspective. We identified major trends, strengths and weaknesses of the pinniped fossil record, including potential biases that may affect our interpretations. We found that 39% of the record corresponds to extant taxa, which are essentially from the Pleistocene and Holocene. There is a larger record from the Northern Hemisphere, suggesting biases in sampling and collection effort. The record is not strongly biased by sedimentary outcrop bias. Specifically, for extinct species, nearly half of them are represented by a single occurrence and a large proportion have type specimens consisting of single isolated postcranial elements. While the pinniped fossil record may have adequate temporal and taxonomic coverage, it has a strong geographical bias and its comparability is hindered by the incompleteness of type specimens. These results should be taken into account when addressing patterns of their past diversity, evolutionary history and paleoecology.

20.
PeerJ ; 7: e7629, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608165

RESUMO

Rorqual whales are among the most species rich group of baleen whales (or mysticetes) alive today, yet the monophyly of the traditional grouping (i.e., Balaenopteridae) remains unclear. Additionally, many fossil mysticetes putatively assigned to either Balaenopteridae or Balaenopteroidea may actually belong to stem lineages, although many of these fossil taxa suffer from inadequate descriptions of fragmentary skeletal material. Here we provide a redescription of the holotype of Megaptera miocaena, a fossil balaenopteroid from the Monterey Formation of California, which consists of a partial cranium, a fragment of the rostrum, a single vertebra, and both tympanoperiotics. Kellogg (1922) assigned the type specimen to the genus Megaptera Gray (1846), on the basis of its broad similarities to distinctive traits in the cranium of extant humpback whales (Megaptera novaeangliae (Borowski, 1781)). Subsequent phylogenetic analyses have found these two species as sister taxa in morphological datasets alone; the most recent systematic analyses using both molecular and morphological data sets place Megaptera miocaena as a stem balaenopteroid unrelated to humpback whales. Here, we redescribe the type specimen of Megaptera miocaena in the context of other fossil balaenopteroids discovered nearly a century since Kellogg's original description and provide a morphological basis for discriminating it from Megaptera novaeangliae. We also provide a new generic name and recombine the taxon as Norrisanima miocaena, gen. nov., to reflect its phylogenetic position outside of crown Balaenopteroidea, unrelated to extant Megaptera. Lastly, we refine the stratigraphic age of Norrisanima miocaena, based on associated microfossils to a Tortonian age (7.6-7.3 Ma), which carries implications for understanding the origin of key features associated with feeding and body size evolution in this group of whales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...