Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 51(3): 1182-1190, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34951436

RESUMO

We report the first synthesis and computational study of Sc3N@C78(CF2) - an analog of the previously reported Sc3N@C80(CF2) with a less common carbon cage whose chemical properties presently remain far less studied. Sc3N@C78 appears to be considerably more reactive toward CF2 addition than Sc3N@C80 and somewhat more reactive than C60. Even though the less symmetric D3h(5)-C78 carbon cage offers far broader opportunities for isomerism than Ih-C80, CF2 addition to Sc3N@C78 proceeds regioselectively, similarly to other common fullerene reactions. A DFT survey of the thermodynamic and kinetic aspects of CF2 addition demonstrates that the regioselectivity is controlled kinetically.

2.
Dalton Trans ; 49(26): 9137-9147, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32578639

RESUMO

We report the first successful synthesis of a CF2 derivative of the stable endohedral fullerene Sc3N@Ih-C80. Reaction with CF2ClCOONa yields a single Cs-symmetric Sc3N@C80(CF2) adduct where the CF2 group is inserted into a [6,6]-bond and opens it to 2.3 Å between the bridgehead carbon atoms. As evidenced by absorption and fluorescence spectroscopy as well as cyclic voltammetry, both the HOMO and the LUMO level of Sc3N@C80(CF2) are slightly (ca. 0.1 eV) downshifted with respect to the parent Sc3N@Ih-C80, so the HOMO-LUMO gap remains essentially unchanged. The DFT calculations suggest that the reaction mechanism is not the previously assumed [2 + 1]-cycloaddition of :CF2 carbene but rather nucleophilic addition of CF2Cl- anion followed by elimination of Cl- and closing of the CF2 bridge via intramolecular nucleophilic substitution. Selective formation of the [6,6]-Sc3N@C80(CF2) turns out to be kinetically controlled and promoted by a particular orientation of the endohedral Sc3N cluster with respect to the CF2Cl- addition site. In its turn, the CF2 addend partly hampers the rotation of Sc3N the endohedral cluster compared to its quasi-free reorientations in the parent Sc3N@Ih-C80.

3.
J Am Chem Soc ; 136(38): 13436-41, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25170987

RESUMO

The anion radicals of isomeric [5,6] and [6,6] Sc3N@C80 benzoadducts were studied by electron spin resonance spectroscopy, density functional theory computations, and molecular dynamics. In both compounds the rotation of the Sc3N cluster is frozen and the spin density distribution of the cluster is highly anisotropic, with hyperfine coupling constants of 9.1 and 2 × 33.3 G for the [5,6] adduct and ∼0.6 and 2 × 47.9 G for the [6,6] adduct. Remarkably, the subtle variation of the position of the exohedral group on the surface of the cage results in very pronounced changes in the spin density distribution and the dynamics of the encapsulated Sc3N cluster.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA