Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-458047

RESUMO

The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 disease, has killed over four million people worldwide as of July 2021 with infections rising again due to the emergence of highly transmissible variants. Animal models that faithfully recapitulate human disease are critical for assessing SARS-CoV-2 viral and immune dynamics, for understanding mechanisms of disease, and for testing vaccines and therapeutics. Pigtail macaques (PTM, Macaca nemestrina) demonstrate a rapid and severe disease course when infected with simian immunodeficiency virus (SIV), including the development of severe cardiovascular symptoms that are pertinent to COVID-19 manifestations in humans. We thus proposed this species may likewise exhibit severe COVID-19 disease upon infection with SARS-CoV-2. Here, we extensively studied a cohort of SARS-CoV-2-infected PTM euthanized either 6- or 21-days after respiratory viral challenge. We show that PTM demonstrate largely mild-to-moderate COVID-19 disease. Pulmonary infiltrates were dominated by T cells, including CD4+ T cells that upregulate CD8 and express cytotoxic molecules, as well as virus-targeting T cells that were predominantly CD4+. We also noted increases in inflammatory and coagulation markers in blood, pulmonary pathologic lesions, and the development of neutralizing antibodies. Together, our data demonstrate that SARS-CoV-2 infection of PTM recapitulates important features of COVID-19 and reveals new immune and viral dynamics and thus may serve as a useful animal model for studying pathogenesis and testing vaccines and therapeutics.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-453127

RESUMO

The COVID-19 pandemic resulted from global infection by the SARS-CoV-2 coronavirus and rapidly emerged as an urgent health issue requiring effective treatments. To initiate infection, the Spike protein of SARS-CoV-2 requires proteolytic processing mediated by host proteases. Among the host proteases proposed to carry out this activation is the cysteine protease cathepsin L. Inhibiting cathepsin L has been proposed as a therapeutic strategy for treating COVID-19. SLV213 (K777) is an orally administered small molecule protease inhibitor that exhibits in vitro activity against a range of viruses, including SARS-CoV-2. To confirm efficacy in vivo, K777 was evaluated in an African green monkey (AGM) model of COVID-19. A pilot experiment was designed to test K777 in a prophylactic setting, animals were pre-treated with 100mg/kg K777 (N=4) or vehicle (N=2) before inoculation with SARS-CoV-2. Initial data demonstrated that K777 treatment reduced pulmonary pathology compared to vehicle-treated animals. A second study was designed to test activity in a therapeutic setting, with K777 treatment (33 mg/kg or 100 mg/kg) initiated 8 hours after exposure to the virus. In both experiments, animals received K777 daily via oral gavage for 7 days. Vehicle-treated animals exhibited higher lung weights, pleuritis, and diffuse alveolar damage. In contrast, lung pathology was reduced in K777-treated monkeys, and histopathological analyses confirmed the lack of diffuse alveolar damage. Antiviral effects were further demonstrated by quantitative reductions in viral load of samples collected from upper and lower airways. These preclinical data support the potential for early SLV213 treatment in COVID-19 patients to prevent severe lung pathology and disease progression.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-445878

RESUMO

SARS-CoV-2 is a respiratory borne pathogenic beta coronavirus that is the source of a worldwide pandemic and the cause of multiple pathologies in man. The rhesus macaque model of COVID-19 was utilized to test the added benefit of combinatory parenteral administration of two high-affinity anti-SARS-CoV-2 monoclonal antibodies (mAbs; C144-LS and C135-LS) expressly developed to neutralize the virus and modified to extend their pharmacokinetics. After completion of kinetics study of mAbs in the primate, combination treatment was administered prophylactically to mucosal viral challenge. Results showed near complete virus neutralization evidenced by no measurable titer in mucosal tissue swabs, muting of cytokine/chemokine response, and lack of any discernable pathologic sequalae. Blocking infection was a dose-related effect, cohorts receiving lower doses (6, 2 mg/kg) resulted in low grade viral infection in various mucosal sites compared to that of a fully protective dose (20 mg/kg). A subset of animals within this cohort whose infectious challenge was delayed 75 days later after mAb administration were still protected from disease. Results indicate this combination mAb effectively blocks development of COVID-19 in the rhesus disease model and accelerates the prospect of clinical studies with this effective antibody combination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA