Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 9400, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296283

RESUMO

Many challenges related to carbon-dioxide ([Formula: see text]) sequestration in subsurface rock are linked to the injection of fluids through induced or existing fracture networks and how these fluids are altered through geochemical interactions. Here, we demonstrate that fluid mixing and carbonate mineral distributions in fractures are controlled by gravity-driven chemical dynamics. Using optical imaging and numerical simulations, we show that a density contrast between two miscible fluids causes the formation of a low-density fluid runlet that increases in areal extent as the fracture inclination decreases from 90[Formula: see text] (vertical fracture plane) to 30[Formula: see text]. The runlet is sustained over time and the stability of the runlet is controlled by the gravity-driven formation of 3D vortices that arise in a laminar flow regime. When homogeneous precipitation was induced, calcium carbonate covered the entire surface for horizontal fractures (0[Formula: see text]). However, for fracture inclinations greater than 10[Formula: see text], the runlet formation limited the areal extent of the precipitation to less than 15% of the fracture surface. These insights suggest that the ability to sequester [Formula: see text] through mineralization along fractures will depend on the fracture orientation relative to gravity, with horizontal fractures more likely to seal uniformly.


Assuntos
Carbonato de Cálcio , Dióxido de Carbono
2.
Sci Rep ; 12(1): 22264, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564407

RESUMO

Rock, concrete, and other engineered materials are often composed of several minerals that change volumetrically in response to variations in the moisture content of the local environment. Such differential shrinkage is caused by varying shrinkage rates between mineral compositions during dehydration. Using both 3D X-ray imaging of geo-architected samples and peridynamic (PD) numerical simulations, we show that the spatial distribution of the clay affects the crack network geometry with distributed clay particles yielding the most complex crack networks and percent damage (99.56%), along with a 60% reduction in material strength. We also demonstrate that crack formation, growth, coalescence, and distribution during dehydration, are controlled by the differential shrinkage rates between a highly shrinkable clay and a homogeneous mortar matrix. Sensitivity tests performed with the PD models show a clay shrinkage parameter of 0.4 yields considerable damage, and reductions in the parameter can result in a significant reduction in fracturing and an increase in material strength. Additionally, isolated clay inclusions induced localized fracturing predominantly due to debonding between the clay and matrix. These insights indicate differential shrinkage is a source of potential failure in natural and engineered barriers used to sequester anthropogenic waste.

3.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495346

RESUMO

Earthquake prediction, the long-sought holy grail of earthquake science, continues to confound Earth scientists. Could we make advances by crowdsourcing, drawing from the vast knowledge and creativity of the machine learning (ML) community? We used Google's ML competition platform, Kaggle, to engage the worldwide ML community with a competition to develop and improve data analysis approaches on a forecasting problem that uses laboratory earthquake data. The competitors were tasked with predicting the time remaining before the next earthquake of successive laboratory quake events, based on only a small portion of the laboratory seismic data. The more than 4,500 participating teams created and shared more than 400 computer programs in openly accessible notebooks. Complementing the now well-known features of seismic data that map to fault criticality in the laboratory, the winning teams employed unexpected strategies based on rescaling failure times as a fraction of the seismic cycle and comparing input distribution of training and testing data. In addition to yielding scientific insights into fault processes in the laboratory and their relation with the evolution of the statistical properties of the associated seismic data, the competition serves as a pedagogical tool for teaching ML in geophysics. The approach may provide a model for other competitions in geosciences or other domains of study to help engage the ML community on problems of significance.

4.
Nat Commun ; 11(1): 5282, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077790

RESUMO

The modern energy economy and environmental infrastructure rely on the flow of fluids through fractures in rock. Yet this flow cannot be imaged directly because rocks are opaque to most probes. Here we apply chattering dust, or chemically reactive grains of sucrose containing pockets of pressurized carbon dioxide, to study rock fractures. As a dust grain dissolves, the pockets burst and emit acoustic signals that are detected by distributed sets of external ultrasonic sensors that track the dust movement through fracture systems. The dust particles travel through locally varying fracture apertures with varying speeds and provide information about internal fracture geometry, flow paths and bottlenecks. Chattering dust particles have an advantage over chemical sensors because they do not need to be collected, and over passive tracers because the chattering dust delineates the transport path. The current laboratory work has potential to scale up to near-borehole applications in the field.

5.
Sci Rep ; 10(1): 2260, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041985

RESUMO

Two longstanding goals in subsurface science are to induce fractures with a desired geometry and to adaptively control the interstitial geometry of existing fractures in response to changing subsurface conditions. Here, we demonstrate that microscopic mineral fabric and structure interact with macroscopic strain fields to generate emergent meso-scale geometries of induced fractures. These geometries define preferential directions of flow. Using additively manufactured rock, we demonstrate that highly conductive flow paths can be formed in tensile fractures by creating corrugated surfaces. Generation, suppression and enhancement of corrugations depend on the relative orientation between mineral fabric and layering. These insights into the role of micro-scale structure on macro-scale flow provide a new method for designing subsurface strategies to maximize potential production or to inhibit flow.

6.
Nat Commun ; 7: 10663, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26868649

RESUMO

A goal of subsurface geophysical monitoring is the detection and characterization of fracture alterations that affect the hydraulic integrity of a site. Achievement of this goal requires a link between the mechanical and hydraulic properties of a fracture. Here we present a scaling relationship between fluid flow and fracture-specific stiffness that approaches universality. Fracture-specific stiffness is a mechanical property dependent on fracture geometry that can be monitored remotely using seismic techniques. A Monte Carlo numerical approach demonstrates that a scaling relationship exists between flow and stiffness for fractures with strongly correlated aperture distributions, and continues to hold for fractures deformed by applied stress and by chemical erosion as well. This new scaling relationship provides a foundation for simulating changes in fracture behaviour as a function of stress or depth in the Earth and will aid risk assessment of the hydraulic integrity of subsurface sites.

7.
J Acoust Soc Am ; 134(5): 3551-60, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24180766

RESUMO

The interface between two wedges can be treated as a displacement discontinuity characterized by elastic stiffnesses. By representing the boundary between the two quarter-spaces as a displacement discontinuity, coupled wedge waves were determined theoretically to be dispersive and to depend on the specific stiffness of the non-welded contact between the two wedges. Laboratory experiments on isotropic and anisotropic aluminum confirmed the theoretical prediction that the velocity of coupled wedge waves, for a non-welded interface, ranged continuously from the single wedge wave velocity at low stress to the Rayleigh velocity as the load applied normal to the interface was increased. Elastic waves propagating along the coupled wedges of two quarter-spaces in non-welded contact are found to exist theoretically even when the material properties of the two quarter-spaces are the same.


Assuntos
Acústica , Som , Acústica/instrumentação , Alumínio/química , Anisotropia , Simulação por Computador , Elasticidade , Desenho de Equipamento , Modelos Teóricos , Movimento (Física) , Análise Numérica Assistida por Computador , Fatores de Tempo , Transdutores
8.
Lab Chip ; 12(16): 2858-64, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22678463

RESUMO

Pinned water films in a microfluidic channel act as elastic membranes under tension that increase capillary pressures while preserving the mechanical work dissipated around capillary pressure-saturation, P(c)-S(w), hysteresis cycles. High-resolution two-photon laser micromachining of SU-8 photoresist was used to fabricate wedge-shaped microfluidic channels that included sharp edge features to pin wetting films during drainage. The films were measured using confocal fluorescence microscopy. The tension in the film acts as an elastic tether that shifts the P(c)-S(w) hysteresis cycle higher in pressure relative to the hysteresis cycle in the same sample when films are not pinned. The film tension is strongly nonlinear as the restoring force decreases with increasing displacement. The contribution of elastic forces to hysteresis has important consequences for pressure and saturation control in microfluidics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...