Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Sci Rep ; 14(1): 7070, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528080

RESUMO

The PI3K-AKT-mTOR pathway lies at the confluence of signaling pathways in which various components are subjected to activating genetic alterations in acute myeloid leukemia (AML), thus contributing to oncogenesis. Three AKT isoforms exist in humans. However, whether one isoform predominates in AML remains unknown. This study reveals that AKT3 behaves very distinctly than AKT1 or AKT2 in both normal myeloid differentiation and AML. During normal differentiation, AKT3 is preferentially expressed in hematopoietic stem cells whilst AKT1 becomes preferentially expressed as cells differentiate into granulocytes or monocytes. AKT2 expression remains unchanged. In AML, AKT3 expression varies widely among patient samples and is counterintuitively high in mature/monocytic leukemia. Furthermore, a low level of AKT3 expression is strongly correlated to genetic alterations associated with a better outcome (NPM1 mutations and RUNX1-RUNX1T1 translocation), while a high level is correlated to alterations associated to a bad outcome (RUNX1 mutations; and SRSF2, U2AF1, SF3B1, ASXL1 and BCOR mutations occurring frequently in MDS and MPN). Consistently, a high AKT3 expression level appears as a very strong predictor of poor survival. Curiously, although modestly varying among AML samples, a high AKT1 expression shows in contrast as a strong predictor of a better patient outcome. These data suggest that AKT3 and AKT1 expressions have strong, yet opposite, prognostic values.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-akt , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/genética , Mutação , Fosfatidilinositol 3-Quinases/genética , Prognóstico , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
NAR Cancer ; 4(4): zcac031, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36325577

RESUMO

mRNA translation is a key mechanism for cancer cell proliferation and stress adaptation. Regulation of this machinery implicates upstream pathways such as PI3K/AKT/mTOR, RAS/MEK/ERK and the integrated stress response (ISR), principally coordinating the translation initiation step. During the last decade, dysregulation of the mRNA translation process in pancreatic cancer has been widely reported, and shown to critically impact on cancer initiation, development and survival. This includes translation dysregulation of mRNAs encoding oncogenes and tumor suppressors. Hence, cancer cells survive a stressful microenvironment through a flexible regulation of translation initiation for rapid adaptation. The ISR pathway has an important role in chemoresistance and shows high potential therapeutic interest. Despite the numerous translational alterations reported in pancreatic cancer, their consequences are greatly underestimated. In this review, we summarize the different translation dysregulations described in pancreatic cancer, which make it invulnerable, as well as the latest drug discoveries bringing a glimmer of hope.

3.
Cancers (Basel) ; 13(21)2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34771686

RESUMO

Anaplastic large cell lymphomas associated with ALK translocation have a good outcome after CHOP treatment; however, the 2-year relapse rate remains at 30%. Microarray gene-expression profiling of 48 samples obtained at diagnosis was used to identify 47 genes that were differentially expressed between patients with early relapse/progression and no relapse. In the relapsing group, the most significant overrepresented genes were related to the regulation of the immune response and T-cell activation while those in the non-relapsing group were involved in the extracellular matrix. Fluidigm technology gave concordant results for 29 genes, of which FN1, FAM179A, and SLC40A1 had the strongest predictive power after logistic regression and two classification algorithms. In parallel with 39 samples, we used a Kallisto/Sleuth pipeline to analyze RNA sequencing data and identified 20 genes common to the 28 genes validated by Fluidigm technology-notably, the FAM179A and FN1 genes. Interestingly, FN1 also belongs to the gene signature predicting longer survival in diffuse large B-cell lymphomas treated with CHOP. Thus, our molecular signatures indicate that the FN1 gene, a matrix key regulator, might also be involved in the prognosis and the therapeutic response in anaplastic lymphomas.

4.
JCI Insight ; 6(21)2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34747369

RESUMO

Circular RNAs (circRNAs) represent a type of endogenous noncoding RNA generated by back-splicing events. Unlike the majority of RNAs, circRNAs are covalently closed, without a 5' end or a 3' poly(A) tail. A few circRNAs can be associated with polysomes, suggesting a protein-coding potential. CircRNAs are not degraded by RNA exonucleases or ribonuclease R and are enriched in exosomes. Recent developments in experimental methods coupled with evolving bioinformatic approaches have accelerated functional investigation of circRNAs, which exhibit a stable structure, a long half-life, and tumor specificity and can be extracted from body fluids and used as potential biological markers for tumors. Moreover, circRNAs may regulate the occurrence and development of cancers and contribute to drug resistance through a variety of molecular mechanisms. Despite the identification of a growing number of circRNAs, their effects in hematological cancers remain largely unknown. Recent studies indicate that circRNAs could also originate from fusion genes (fusion circRNAs, f-circRNAs) next to chromosomal translocations, which are considered the primary cause of various cancers, notably hematological malignancies. This Review will focus on circRNAs and f-circRNAs in hematological cancers.


Assuntos
Neoplasias Hematológicas/genética , RNA Circular/genética , Humanos
5.
Leukemia ; 35(10): 2784-2798, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34131282

RESUMO

The most frequent genetic alteration in acute myeloid leukemia (AML) is the mutation of nucleophosmin 1 (NPM1). Yet, its downstream oncogenic routes are not fully understood. Here, we report the identification of one long noncoding RNA (lncRNA) overexpressed in NPM1-mutated AML patients (named LONA) whose intracellular localization inversely reflects that of NPM1. While NPM1 is nuclear and LONA cytoplasmic in wild-type NPM1 AML cells, LONA becomes nuclear as mutant NPM1 moves toward the cytoplasm. Gain or loss of function combined with a genome-wide RNA-seq search identified a set of LONA mRNA targets encoding proteins involved in myeloid cell differentiation (including THSB1, MAFB, and ASB2) and interaction with its microenvironment. Consistently, LONA overexpression in mutant NPM1 established cell lines and primary AML cells exerts an anti-myeloid differentiation effect, whilst it exerts an opposite pro-myeloid differentiation effect in a wild type NPM1 setting. In vivo, LONA overexpression acts as an oncogenic lncRNA reducing the survival of mice transplanted with AML cells and rendering AML tumors more resistant to AraC chemotherapy.These data indicate that mutation-dependent nuclear export of NPM1 leads to nuclear retention and consequent oncogenic functions of the overexpressed lncRNA LONA, thus uncovering a novel NPM1 mutation-dependent pathway in AML pathogenesis.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/genética , Leucemia Mieloide Aguda/genética , Mutação/genética , Proteínas Nucleares/genética , RNA Longo não Codificante/genética , Animais , Carcinogênese/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Citoplasma/genética , Regulação Leucêmica da Expressão Gênica/genética , Células HL-60 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Nucleofosmina , RNA Mensageiro/genética , Microambiente Tumoral/genética
6.
Pancreatology ; 21(4): 677-681, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33648878

RESUMO

BACKGROUND: The MNK1 protein kinase is directly activated by the MAPK pathway and is specifically expressed in pancreatic acinar cells. Both the MNK1 kinase and the MAPK pathway are required for response to pancreatitis, suggesting that their pharmacological targeting would be of therapeutic interest. Because the mRNA cap-binding protein and translation initiation factor eIF4E is the major known MNK1 substrate, one could anticipate that the protective function of MNK1 in pancreatitis is mediated by eIF4E phosphorylation. METHODS: Acute pancreatitis was induced by the intraperitoneal administration of cerulein in wild-type mice and in transgenic mice carrying two non-phosphorylatable Eif4e alleles. The expression and phosphorylation of proteins of the MNK1-eIF4E pathway was visualized by western-blotting. The severity of pancreatitis was monitored by the measure of serum amylase levels and by histopathology and immunohistochemistry using apoptosis and immune infiltrate markers. RESULTS: Despite a strong induction in MNK1 kinase activity in both wild-type and transgenic mice, precluding eIF4E phosphorylation has no impact on the severity of acute pancreatitis. Serum amylase is equally induced in both mouse genotypes and neither acinar cell apoptosis nor immune infiltrate is exacerbated. CONCLUSION: eIF4E phosphorylation is not required for response to pancreatitis indicating that the acinar-cell-specific MNK1 kinase acts in acute pancreatitis via another substrate.


Assuntos
Fator de Iniciação 4E em Eucariotos , Pancreatite , Doença Aguda , Amilases , Animais , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Camundongos , Pancreatite/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética
7.
Biomolecules ; 11(2)2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573353

RESUMO

The unfolded protein response (UPR) is an evolutionarily conserved adaptive signaling pathway triggered by a stress of the endoplasmic reticulum (ER) lumen compartment, which is initiated by the accumulation of unfolded proteins. This response, mediated by three sensors-Inositol Requiring Enzyme 1 (IRE1), Activating Transcription Factor 6 (ATF6), and Protein Kinase RNA-Like Endoplasmic Reticulum Kinase (PERK)-allows restoring protein homeostasis and maintaining cell survival. UPR represents a major cytoprotective signaling network for cancer cells, which frequently experience disturbed proteostasis owing to their rapid proliferation in an usually unfavorable microenvironment. Increased basal UPR also participates in the resistance of tumor cells against chemotherapy. UPR activation also occurs during hematopoiesis, and growing evidence supports the critical cytoprotective role played by ER stress in the emergence and proliferation of leukemic cells. In case of severe or prolonged stress, pro-survival UPR may however evolve into a cell death program called terminal UPR. Interestingly, a large number of studies have revealed that the induction of proapoptotic UPR can also strongly contribute to the sensitization of leukemic cells to chemotherapy. Here, we review the current knowledge on the consequences of the deregulation of UPR signaling in leukemias and their implications for the treatment of these diseases.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Resposta a Proteínas não Dobradas , Fator 6 Ativador da Transcrição , Animais , Apoptose , Autofagia , Cálcio/química , Sobrevivência Celular , DNA Mitocondrial/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases , Homeostase , Humanos , Íons , Lipídeos/química , Proteínas Serina-Treonina Quinases , Microambiente Tumoral , eIF-2 Quinase/metabolismo
8.
Cell Mol Gastroenterol Hepatol ; 11(5): 1405-1436, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33482394

RESUMO

BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs) from pancreatic adenocarcinoma (PDA) present high protein synthesis rates. CAFs express the G-protein-coupled somatostatin receptor sst1. The sst1 agonist SOM230 blocks CAF protumoral features in vitro and in immunocompromised mice. We have explored here the therapeutic potential of SOM230, and underlying mechanisms, in immunocompetent models of murine PDA mimicking the heavy fibrotic and immunosuppressive stroma observed in patient tumors. METHODS: Large-scale mass spectrometry analyses were performed on media conditioned from 9 patient PDA-derived CAF primary cultures. Spontaneous transgenic and experimental (orthotopic co-graft of tumor cells plus CAFs) PDA-bearing mice were longitudinally ultrasound-monitored for tumor and metastatic progression. Histopathology and flow cytometry analyses were performed on primary tumors and metastases. Stromal signatures were functionally validated through bioinformatics using several published, and 1 original, PDA database. RESULTS: Proteomics on the CAF secretome showed that SOM230 controls stromal activities including inflammatory responses. Among the identified secreted proteins, we validated that colony-stimulating factor 1 (CSF-1) (a macrophage growth factor) was reduced by SOM230 in the tumor and plasma of PDA-harboring mice, alongside intratumor stromal normalization (reduced CAF and macrophage activities), and dramatic metastasis reduction. In transgenic mice, these SOM230 benefits alleviate the chemotherapy-induced (gemcitabine) immunosuppressive stroma reshaping. Mechanistically, SOM230 acts in vivo on CAFs through sst1 to disrupt prometastatic CAF production of CSF-1 and cross-talk with macrophages. We found that in patients, stromal CSF-1 was associated with aggressive PDA forms. CONCLUSIONS: We propose SOM230 as an antimetastatic therapy in PDA for its capacity to remodel the fibrotic and immunosuppressive myeloid stroma. This pharmacotherapy should benefit PDA patients treated with chemotherapies.


Assuntos
Fibroblastos Associados a Câncer/efeitos dos fármacos , Carcinoma Ductal Pancreático/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Secretoma/efeitos dos fármacos , Somatostatina/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Animais , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/secundário , Feminino , Hormônios/farmacologia , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Somatostatina/farmacologia
9.
EMBO Mol Med ; 12(11): e12010, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33025708

RESUMO

Cancer-associated fibroblasts (CAFs) are considered the most abundant type of stromal cells in pancreatic ductal adenocarcinoma (PDAC), playing a critical role in tumour progression and chemoresistance; however, a druggable target on CAFs has not yet been identified. Here we report that focal adhesion kinase (FAK) activity (evaluated based on 397 tyrosine phosphorylation level) in CAFs is highly increased compared to its activity in fibroblasts from healthy pancreas. Fibroblastic FAK activity is an independent prognostic marker for disease-free and overall survival of PDAC patients (cohort of 120 PDAC samples). Genetic inactivation of FAK within fibroblasts (FAK kinase-dead, KD) reduces fibrosis and immunosuppressive cell number within primary tumours and dramatically decreases tumour spread. FAK pharmacologic or genetic inactivation reduces fibroblast migration/invasion, decreases extracellular matrix (ECM) expression and deposition by CAFs, modifies ECM track generation and negatively impacts M2 macrophage polarization and migration. Thus, FAK activity within CAFs appears as an independent PDAC prognostic marker and a druggable driver of tumour cell invasion.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Fibroblastos , Humanos , Fosforilação , Prognóstico
10.
Cells ; 9(3)2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111004

RESUMO

During carcinogenesis, almost all the biological processes are modified in one way or another. Among these biological processes affected, anomalies in protein synthesis are common in cancers. Indeed, cancer cells are subjected to a wide range of stresses, which include physical injuries, hypoxia, nutrient starvation, as well as mitotic, oxidative or genotoxic stresses. All of these stresses will cause the accumulation of unfolded proteins in the Endoplasmic Reticulum (ER), which is a major organelle that is involved in protein synthesis, preservation of cellular homeostasis, and adaptation to unfavourable environment. The accumulation of unfolded proteins in the endoplasmic reticulum causes stress triggering an unfolded protein response in order to promote cell survival or to induce apoptosis in case of chronic stress. Transcription and also translational reprogramming are tightly controlled during the unfolded protein response to ensure selective gene expression. The majority of stresses, including ER stress, induce firstly a decrease in global protein synthesis accompanied by the induction of alternative mechanisms for initiating the translation of mRNA, later followed by a translational recovery. After a presentation of ER stress and the UPR response, we will briefly present the different modes of translation initiation, then address the specific translational regulatory mechanisms acting during reticulum stress in cancers and highlight the importance of translational control by ER stress in tumours.


Assuntos
Estresse do Retículo Endoplasmático , Neoplasias/metabolismo , Neoplasias/patologia , Biossíntese de Proteínas , Animais , Humanos , Modelos Biológicos , Transdução de Sinais , Resposta a Proteínas não Dobradas
11.
JCI Insight ; 4(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672935

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) relies on hyperactivated protein synthesis. Consistently, human and mouse PDAC lose expression of the translational repressor and mTOR target 4E-BP1. Using genome-wide polysome profiling, we here explore mRNAs whose translational efficiencies depend on the mTOR/4E-BP1 axis in pancreatic cancer cells. We identified a functional enrichment for mRNAs encoding DNA replication and repair proteins, including RRM2 and CDC6. Consequently, 4E-BP1 depletion favors DNA repair and renders DNA replication insensitive to mTOR inhibitors, in correlation with a sustained protein expression of CDC6 and RRM2, which is inversely correlated with 4E-BP1 expression in PDAC patient samples. DNA damage and pancreatic lesions induced by an experimental pancreatitis model uncover that 4E-BP1/2-deleted mice display an increased acinar cell proliferation and a better recovery than WT animals. Targeting translation, independently of 4E-BP1 status, using eIF4A RNA helicase inhibitors (silvestrol derivatives) selectively modulates translation and limits CDC6 expression and DNA replication, leading to reduced PDAC tumor growth. In summary, 4E-BP1 expression loss during PDAC development induces selective changes in translation of mRNA encoding DNA replication and repair protein. Importantly, targeting protein synthesis by eIF4A inhibitors circumvents PDAC resistance to mTOR inhibition.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinoma Ductal Pancreático/metabolismo , Proteínas de Ciclo Celular/genética , Replicação do DNA , Fator de Iniciação 4A em Eucariotos/antagonistas & inibidores , Neoplasias Pancreáticas/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Humanos , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Biossíntese de Proteínas , Serina-Treonina Quinases TOR/antagonistas & inibidores
12.
Front Genet ; 10: 254, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984242

RESUMO

The 4G family of eukaryotic mRNA translation initiation factors is composed of three members (eIF4GI, eIF4GII, and DAP5). Their specific roles in translation initiation are under intense investigations, but how their respective intracellular amounts are controlled remains poorly understood. Here we show that eIF4GI and eIF4GII exhibit much shorter half-lives than that of DAP5. Both eIF4GI and eIF4GII proteins, but not DAP5, contain computer-predicted PEST motifs in their N-termini conserved across the animal kingdom. They are both sensitive to degradation by the proteasome. Under normal conditions, eIF4GI and eIF4GII are protected from proteasomal destruction through binding to the detoxifying enzyme NQO1 [NAD(P)H:quinone oxidoreductase]. However, when cells are exposed to oxidative stress both eIF4GI and eIF4GII, but not DAP5, are degraded by the proteasome in an N-terminal-dependent manner, and cell viability is more compromised upon silencing of DAP5. These findings indicate that the three eIF4G proteins are differentially regulated by the proteasome and that persistent DAP5 plays a role in cell survival upon oxidative stress.

13.
Cancers (Basel) ; 11(2)2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30691003

RESUMO

Delta-like 4 (DLL4) is a pivotal endothelium specific Notch ligand that has been shown to function as a regulating factor during physiological and pathological angiogenesis. DLL4 functions as a negative regulator of angiogenic branching and sprouting. Interestingly, Dll4 is with Vegf-a one of the few examples of haplo-insufficiency, resulting in obvious vascular abnormalities and in embryonic lethality. These striking phenotypes are a proof of concept of the crucial role played by the bioavailability of VEGF and DLL4 during vessel patterning and that there must be a very fine-tuning of DLL4 expression level. However, to date the expression regulation of this factor was poorly studied. In this study, we showed that the DLL4 5'-UTR harbors an Internal Ribosomal Entry Site (IRES) that, in contrast to cap-dependent translation, was efficiently utilized in cells subjected to several stresses including hypoxia and endoplasmic reticulum stress (ER stress). We identified PERK, a kinase activated by ER stress, as the driver of DLL4 IRES-mediated translation, and hnRNP-A1 as an IRES-Trans-Acting Factor (ITAF) participating in the IRES-dependent translation of DLL4 during endoplasmic reticulum stress. The presence of a stress responsive internal ribosome entry site in the DLL4 msRNA suggests that the process of alternative translation initiation, by controlling the expression of this factor, could have a crucial role in the control of endothelial tip cell function.

14.
Cell Death Dis ; 8(12): 3204, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233971

RESUMO

Pancreatic cancer cells show varying sensitivity to the anticancer effects of gemcitabine. However, as a chemotherapeutic agent, gemcitabine can cause intolerably high levels of toxicity and patients often develop resistance to the beneficial effects of this drug. Combination studies show that use of gemcitabine with the pro-apoptotic cytokine TRAIL can enhance the inhibition of survival and induction of apoptosis of pancreatic cancer cells. Additionally, following combination treatment there is a dramatic increase in the level of the hypophosphorylated form of the tumour suppressor protein 4E-BP1. This is associated with inhibition of mTOR activity, resulting from caspase-mediated cleavage of the Raptor and Rictor components of mTOR. Use of the pan-caspase inhibitor Z-VAD-FMK indicates that the increase in level of 4E-BP1 is also caspase-mediated. ShRNA-silencing of 4E-BP1 expression renders cells more resistant to cell death induced by the combination treatment. Since the levels of 4E-BP1 are relatively low in untreated pancreatic cancer cells these results suggest that combined therapy with gemcitabine and TRAIL could improve the responsiveness of tumours to treatment by elevating the expression of 4E-BP1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Regulação Neoplásica da Expressão Gênica , Fosfoproteínas/genética , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/efeitos dos fármacos , Caspases/genética , Caspases/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Combinação de Medicamentos , Sinergismo Farmacológico , Humanos , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/metabolismo , Fosforilação , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Imagem com Lapso de Tempo , Gencitabina
15.
Environ Sci Pollut Res Int ; 24(20): 16985-16993, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28580543

RESUMO

One essential step of museum and clinical specimen preservation is immersion in a fixative fluid to prevent degradation. Formalin is the most largely used fixative, but its benefit is balanced with its toxic and carcinogenic status. Moreover, because formalin-fixation impairs nucleic acids recovery and quality, current museum wet collections and formalin-fixed, paraffin-embedded clinical samples do not represent optimal tanks of molecular information. Our study has been developed to compare formalin to two alternative fixatives (RCL2® and ethanol) in a context of molecular exploitation. Based on a unique protocol, we created mammalian fixed collections, simulated the impact of time on preservation using an artificial ageing treatment and followed the evolution of specimens' DNA quality. DNA extraction yield, purity, visual integrity and qualitative and quantitative ability to amplify the Cox1 gene were assessed. Our results show that both RCL2 and ethanol exhibit better performances than formalin. They do not impair DNA extraction yield, and more importantly, DNA alteration is delayed over the preservation step. The use of RCL2 or ethanol as fixative in biological collections may insure a better exploitation of the genetic resources they propose.


Assuntos
DNA , Formaldeído , Fixação de Tecidos , Animais , Fixadores , Humanos , Ácidos Nucleicos
16.
Clin Res Hepatol Gastroenterol ; 41(3): 246-248, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27939096

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains a deadly cancer, characterized by a uniquely immunosuppressive and fibrotic microenvironment responsible for its high chemoresistance. Jiang et al. identify FAK (focal adhesion kinase) activity as an interesting therapeutic target, the inhibition of which drastically reduces PDAC microenvironment deleterious features. In combination with gemcitabine and immune-checkpoint therapy, FAK inhibitor promotes long-term tumor stasis with extended survival in PDAC mouse models. In conclusion, Jiang et al. provide proof of concept that FAK inhibitors combined with chemotherapy will highly profit PDAC patients.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Proteína-Tirosina Quinases de Adesão Focal , Humanos , Camundongos , Microambiente Tumoral
17.
Cell Rep ; 17(2): 501-513, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27705797

RESUMO

Loss of skeletal muscle mass and force aggravates age-related sarcopenia and numerous pathologies, such as cancer and diabetes. The AKT-mTORC1 pathway plays a major role in stimulating adult muscle growth; however, the functional role of its downstream mediators in vivo is unknown. Here, we show that simultaneous inhibition of mTOR signaling to both S6K1 and 4E-BP1 is sufficient to reduce AKT-induced muscle growth and render it insensitive to the mTORC1-inhibitor rapamycin. Surprisingly, lack of mTOR signaling to 4E-BP1 only, or deletion of S6K1 alone, is not sufficient to reduce muscle hypertrophy or alter its sensitivity to rapamycin. However, we report that, while not required for muscle growth, S6K1 is essential for maintaining muscle structure and force production. Hypertrophy in the absence of S6K1 is characterized by compromised ribosome biogenesis and the formation of p62-positive protein aggregates. These findings identify S6K1 as a crucial player for maintaining muscle function during hypertrophy.


Assuntos
Proteínas de Transporte/genética , Hipertrofia/genética , Músculo Esquelético/metabolismo , Fosfoproteínas/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Serina-Treonina Quinases TOR/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Fatores de Iniciação em Eucariotos , Humanos , Hipertrofia/metabolismo , Hipertrofia/patologia , Camundongos , Camundongos Knockout , Músculo Esquelético/crescimento & desenvolvimento , Proteína Oncogênica v-akt/genética , Peptídeos/genética , Fosfoproteínas/metabolismo , Fosforilação , Agregados Proteicos/genética , Ribossomos/genética , Ribossomos/metabolismo , Sarcopenia/genética , Sarcopenia/metabolismo , Sarcopenia/patologia , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
18.
Cancer Res ; 76(15): 4394-405, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27280395

RESUMO

The vascular endothelial growth factor VEGF-D promotes metastasis by inducing lymphangiogenesis and dilatation of the lymphatic vasculature, facilitating tumor cell extravasion. Here we report a novel level of control for VEGF-D expression at the level of protein translation. In human tumor cells, VEGF-D colocalized with eIF4GI and 4E-BP1, which can program increased initiation at IRES motifs on mRNA by the translational initiation complex. In murine tumors, the steady-state level of VEGF-D protein was increased despite the overexpression and dephosphorylation of 4E-BP1, which downregulates protein synthesis, suggesting the presence of an internal ribosome entry site (IRES) in the 5' UTR of VEGF-D mRNA. We found that nucleolin, a nucleolar protein involved in ribosomal maturation, bound directly to the 5'UTR of VEGF-D mRNA, thereby improving its translation following heat shock stress via IRES activation. Nucleolin blockade by RNAi-mediated silencing or pharmacologic inhibition reduced VEGF-D translation along with a subsequent constriction of lymphatic vessels in tumors. Our results identify nucleolin as a key regulator of VEGF-D expression, deepening understanding of lymphangiogenesis control during tumor formation. Cancer Res; 76(15); 4394-405. ©2016 AACR.


Assuntos
Linfangiogênese/genética , Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética , Fator D de Crescimento do Endotélio Vascular/metabolismo , Animais , Humanos , Camundongos , Transfecção , Nucleolina
19.
Oncotarget ; 7(27): 41584-41598, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27177087

RESUMO

Pancreatic ductal adenocarcinoma (PDA) shows a rich stroma where cancer-associated fibroblasts (CAFs) represent the major cell type. CAFs are master secretors of proteins with pro-tumor features. CAF targeting remains a promising challenge for PDA, a devastating disease where treatments focusing on cancer cells have failed. We previously introduced a novel pharmacological CAF-targeting approach using the somatostatin analog SOM230 (pasireotide) that inhibits protein synthesis in CAFs, and subsequent chemoprotective features of CAF secretome. Using primary cultures of CAF isolated from human PDA resections, we here report that CAF secretome stimulates in vitro cancer cell survival, migration and invasive features, that are abolished when CAFs are treated with SOM230. Mechanistically, SOM230 inhibitory effect on CAFs depends on the somatostatin receptor subtype sst1 expressed in CAFs but not in non-activated pancreatic fibroblasts, and on protein synthesis shutdown through eiF4E-Binding Protein-1 (4E-BP1) expression decrease. We identify interleukin-6 as a SOM230-inhibited CAF-secreted effector, which stimulates cancer cell features through phosphoinositide 3-kinase activation. In vivo, mice orthotopically co-xenografted with the human pancreatic cancer MiaPaCa-2 cells and CAFs develop pancreatic tumors, on which SOM230 treatment does not inhibit growth but abrogates metastasis. Consistently, CAF secretome stimulates epithelial-to-mesenchymal transition in cancer cells, which is reversed upon CAF treatment with SOM230. Our results highlight a novel promising anti-metastatic potential for SOM230 indirectly targeting pancreatic cancer cell invasion through pharmacological inhibition of stromal CAFs.


Assuntos
Antineoplásicos/uso terapêutico , Fibroblastos Associados a Câncer/efeitos dos fármacos , Carcinoma Ductal Pancreático/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Neoplasias Pancreáticas/tratamento farmacológico , Somatostatina/análogos & derivados , Animais , Antineoplásicos/farmacologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/fisiologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Somatostatina/farmacologia , Somatostatina/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Sci Signal ; 9(426): ra44, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27141928

RESUMO

Angiogenesis is induced by various conditions, including hypoxia. Although cap-dependent translation is globally inhibited during ischemia, the mRNAs encoding two important proangiogenic growth factors, vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF-2), are translated at early time points in ischemic muscle. The translation of these mRNAs can occur through internal ribosome entry sites (IRESs), rather than through cap-dependent translation. Hypoxic conditions also induce the unfolded protein response (UPR) and endoplasmic reticulum (ER) stress, leading us to assess the interplay between hypoxia, ER stress, and IRES-mediated translation of FGF-2 and VEGF We found that unlike cap-dependent translation, translation through FGF-2 and VEGF IRESs was efficient in cells and transgenic mice subjected to ER stress-inducing stimuli. We identified PERK, a kinase that is activated by ER stress, as the driver of VEGF and FGF-2 IRES-mediated translation in cells and in mice expressing IRES-driven reporter genes and exposed to hypoxic stress. These results demonstrate the role of IRES-dependent translation in the induction of the proangiogenic factors VEGF and FGF-2 in response to acute hypoxic stress. Furthermore, the PERK pathway could be a viable pharmacological target to improve physiological responses to ischemic situations.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Sítios Internos de Entrada Ribossomal , Isquemia/metabolismo , eIF-2 Quinase/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Neovascularização Patológica , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Ativação Transcricional , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...