Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microsc ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563195

RESUMO

Fibre bundle (FB)-based endoscopes are indispensable in biology and medical science due to their minimally invasive nature. However, resolution and contrast for fluorescence imaging are limited due to characteristic features of the FBs, such as low numerical aperture (NA) and individual fibre core sizes. In this study, we improved the resolution and contrast of sample fluorescence images acquired using in-house fabricated high-NA FBs by utilising generative adversarial networks (GANs). In order to train our deep learning model, we built an FB-based multifocal structured illumination microscope (MSIM) based on a digital micromirror device (DMD) which improves the resolution and the contrast substantially compared to basic FB-based fluorescence microscopes. After network training, the GAN model, employing image-to-image translation techniques, effectively transformed wide-field images into high-resolution MSIM images without the need for any additional optical hardware. The results demonstrated that GAN-generated outputs significantly enhanced both contrast and resolution compared to the original wide-field images. These findings highlight the potential of GAN-based models trained using MSIM data to enhance resolution and contrast in wide-field imaging for fibre bundle-based fluorescence microscopy. Lay Description: Fibre bundle (FB) endoscopes are essential in biology and medicine but suffer from limited resolution and contrast for fluorescence imaging. Here we improved these limitations using high-NA FBs and generative adversarial networks (GANs). We trained a GAN model with data from an FB-based multifocal structured illumination microscope (MSIM) to enhance resolution and contrast without additional optical hardware. Results showed significant enhancement in contrast and resolution, showcasing the potential of GAN-based models for fibre bundle-based fluorescence microscopy.

2.
Opt Express ; 31(22): 36105-36122, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017767

RESUMO

In this paper we present all-in fiber tunable devices based on specially designed and optimized high-index photonic crystal fibers filled with nematic liquid crystals. A special host microstructured optical fibers have been designed and manufactured to ensure low-loss index guiding and mode field diameter matching to SMF-28 fiber, ensuring low losses on interconnections with leading in-out FC/PC connectorized pigtails. We present four types of tunable all-fiber devices: tunable retarders with tuning range as high as 20 λ, tunable polarizers with variable axis of polarization and continuously tunable polarization dependent losses, tunable and fully controllable polarization controller and finally indeterministic depolarizer in which depolarization is caused by random thermodynamic process. We also present a cost-effective method to achieve change in the direction of the steering electric field, which was controlled by custom-made programable controllers. Finally, we present a method for effective packaging for the proposed devices.

3.
Sci Rep ; 13(1): 20255, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985733

RESUMO

We developed a new kind of compact flat-surface nanostructured gradient index vortex phase mask, for the effective generation of optical vortex beams in broadband infrared wavelength range. A low-cost nanotechnological material method was employed for this work. The binary structure component consists of 17,557 nano-sized rods made of two lead-bismuth-gallium silicate glasses which were developed in-house. Those small rods are spatially arranged in such a way that, according to effective medium theory, the refractive index of this internal structure is constant in the radial direction and linearly changes following azimuthal angle. Numerical results demonstrated that a nanostructured vortex phase mask with a thickness of 19 µm can convert Gaussian beams into fundamental optical vortices over 290 nm wavelength bandwidth from 1275 to 1565 nm. This has been confirmed in experiments using three diode laser sources operating at 1310, 1550, and 1565 nm. The generation of vortex beams is verified through their uniform doughnut-like intensity distributions, clear astigmatic transformation patterns, and spiral as well as fork-like interferograms. This new flat-surface component can be directly mounted to an optical fiber tip for simplifying vortex generator systems as well as easier manipulation of the generated OVB in three-dimensional space.

4.
Opt Express ; 31(8): 13269-13278, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157467

RESUMO

We report on the multidimensional characterization of femtosecond pulse nonlinear dynamics in a tellurite glass graded-index multimode fiber. We observed novel multimode dynamics of a quasi-periodic pulse breathing which manifests as a recurrent spectral and temporal compression and elongation enabled by an input power change. This effect can be assigned to the power dependent modification of the distribution of excited modes, which in turn modifies the efficiency of involved nonlinear effects. Our results provide indirect evidence of periodic nonlinear mode coupling occurring in graded-index multimode fibers thanks to the modal four-wave-mixing phase-matched via Kerr-induced dynamic index grating.

5.
ACS Appl Mater Interfaces ; 15(10): 12831-12841, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36880640

RESUMO

Here, we provide experimental verification supporting the use of short-section imaging bundles for two-photon microscopy imaging of the mouse brain. The 8 mm long bundle is made of a pair of heavy-metal oxide glasses with a refractive index contrast of 0.38 to ensure a high numerical aperture NA = 1.15. The bundle is composed of 825 multimode cores, ordered in a hexagonal lattice with a pixel size of 14 µm and a total diameter of 914 µm. We demonstrate successful imaging through custom-made bundles with 14 µm resolution. As the input, we used a 910 nm Ti-sapphire laser with 140 fs pulse and a peak power of 9 × 104 W. The excitation beam and fluorescent image were transferred through the fiber imaging bundle. As test samples, we used 1 µm green fluorescent latex beads, ex vivo hippocampal neurons expressing green fluorescent protein and cortical neurons in vivo expressing the fluorescent reporter GCaMP6s or immediate early gene Fos fluorescent reporter. This system can be used for minimal-invasive in vivo imaging of the cerebral cortex, hippocampus, or deep brain areas as a part of a tabletop system or an implantable setup. It is a low-cost solution, easy to integrate and operate for high-throughput experiments.


Assuntos
Córtex Cerebral , Corantes , Camundongos , Animais , Microscopia de Fluorescência/métodos , Encéfalo/diagnóstico por imagem , Neuroimagem
6.
Opt Express ; 31(3): 3685-3697, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785355

RESUMO

For over a decade hollow-core fibers have been used in optical gas sensors in the role of gas cells. However, very few examples of actual real-life applications of those sensors have been demonstrated so far. In this paper, we present a highly-sensitive hollow-core fiber based methane sensor. Mid-infrared distributed feedback interband cascade laser operating near 3.27 µm is used to detect gas inside anti-resonant hollow-core fiber. R(3) line near 3057.71 cm-1 located in ν3 band of methane is targeted. Compact, lens-free optical setup with an all-silica negative curvature hollow-core fiber as the gas cell is demonstrated. Using wavelength modulation spectroscopy and 7.5-m-long fiber the detection limit as low as 1.54 ppbv (at 20 s) is obtained. The demonstrated system is applied for a week-long continuous monitoring of ambient methane and water vapor in atmospheric air at ground level. Diurnal cycles in methane concentrations are observed, what proves the sensor's usability in environmental monitoring.

7.
Opt Express ; 31(26): 43004-43016, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178404

RESUMO

We present the pedestal-free thulium doped silica fiber with a large nanostructured core optimized for fiber lasers. The fiber is composed of over 6 thousand thulium doped silica nanorods with a diameter of 71 nm each which form a nanostructured step-index core. We study the influence of non-continuous distribution in nanoscale active areas on gain, beam quality, and fiber laser performance. The proof-of-concept fiber is effectively single mode for wavelength above 1.8 µm. We demonstrate the performance of the fiber in a laser setup pumped at 792 nm. Single mode laser emission with a slope efficiency of 29% at quasi-continuous output power of 4 W with M2 = 1.3 at the emission spectrum 1880-1925 nm is achieved.

8.
Opt Express ; 30(25): 45635-45647, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36522966

RESUMO

We report an experimental study on transmission of orbital angular momentum mode in antiresonant fibers generated with a dedicated all-fiber optical vortex phase mask. The vortex generator can convert Gaussian beam into vortex beams with topological charge l = 1. Generated vortex beam is directly butt-coupled into the antiresonant fiber and propagates over distance of 150 cm. The stability and sensitivity of the transmitted vortex beam on the external perturbations including bending, axial stress, and twisting is investigated. We demonstrate distortion-free vortex propagation for the axial stress force below 0.677 N, a bend radius greater than 10 cm.

9.
Opt Express ; 30(11): 19573-19581, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221730

RESUMO

Efficient collection of photoluminescence arising from spin dynamics of nitrogen vacancy (NV) centers in diamond is important for practical applications involving precise magnetic field or temperature mapping. These goals may be realized by the integration of nanodiamond particles with optical fibers and volumetric doping of the particles alongside the fiber core. That approach combines the advantages of robust axial fixation of NV diamonds with a direct spatial overlap of their fluorescence with the guided mode of the fiber. We developed a suspended core silicate glass fiber with 750 nm-diameter nanodiamonds located centrally in the 1.5 µm-core cross-section along its axis. The developed fiber probe was tested for its magnetic sensing performance in optically detected magnetic resonance measurements using a 24 cm-long fiber sample, with the NV excitation and fluorescence collection from the far ends of the sample and yielding optical readout contrast of 7% resulting in 0.5 µT·Hz-1/2 magnetic field sensitivity, two orders of magnitude better than in earlier designs. Thanks to its improved fluorescence confinement, the developed probe could find application in magnetic sensing over extended fiber length, magnetic field mapping or gradiometry.

10.
Opt Lett ; 47(10): 2550-2553, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35561398

RESUMO

Intensity fluctuations in supercontinuum generation are studied in polarization-maintaining (PM) and non-PM all-normal dispersion tellurite photonic crystal fibers. Dispersive Fourier transformation is used to resolve the shot-to-shot spectra generated using 225-fs pump pulses at 1.55 µm, with experimental results well reproduced by vector and scalar numerical simulations. By comparing the relative intensity noise for the PM and non-PM cases, supported by simulations, we demonstrate the advantage of the polarization-maintaining property of the PM fibers in preserving low-noise dynamics. We associate the low-noise in the PM case with the suppression of polarization modulation instability.

11.
Nat Commun ; 13(1): 2126, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440639

RESUMO

The generation of a two-octave supercontinuum from the visible to mid-infrared (700-2800 nm) in a non-silica graded-index multimode fiber is reported. The fiber design is based on a nanostructured core comprised of two types of drawn lead-bismuth-gallate glass rods with different refractive indices. This yields an effective parabolic index profile and ten times increased nonlinearity when compared to silica fibers. Using femtosecond pulse pumping at wavelengths in both normal and anomalous dispersion regimes, a detailed study is carried out into the supercontinuum generating mechanisms and instabilities seeded by periodic self-imaging. Significantly, suitable injection conditions in the high power regime are found to result in the output beam profile showing clear signatures of beam self-cleaning from nonlinear mode mixing. Experimental observations are interpreted using spatio-temporal 3+1D numerical simulations of the generalized nonlinear Schrödinger equation, and simulated spectra are in excellent agreement with experiment over the full two-octave spectral bandwidth. Experimental comparison with the generation of supercontinuum in a silica graded-index multimode fiber shows that the enhanced nonlinear refractive index of the lead-bismuth-gallate fiber yields a spectrum with a significantly larger bandwidth. These results demonstrate a new pathway towards the generation of bright, ultrabroadband light sources in the mid-infrared.

12.
Opt Express ; 30(2): 2338-2352, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209376

RESUMO

The development of gradient index free-form micro-optic components dedicated to the mid-infrared range is challenging due to the lack of appropriate technology. We propose a method for developing gradient index components for broadband infrared range beyond the transmission window of silicate glass based on nanostructurization using a stack-and-draw fiber drawing technique. A proof-of-concept microlens is developed and verified experimentally in the wavelength range 1.5-4.3 µm. The microlenses are composed of a set of nanorods with a diameter of 940 nm made of a pair of SiO2-PbO-Bi2O3-Ga2O3 based glasses ordered into the preliminary calculated binary pattern. The pattern forms effectively continuous parabolic refractive index distribution for infrared range according to Maxwell-Garnett effective medium model. The development of individual microlenses with a diameter of 118 µm and focal length of 278 µm at the wavelength of 3.75 µm are reported. A large array of 737 microlenses with an individual diameter of 125 µm and focal length of 375 µm is also presented and analyzed.

13.
Opt Lett ; 47(2): 401-404, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030616

RESUMO

We report the development of a silica glass single-mode polarization-maintaining fiber with birefringence induced by artificial anisotropic glass in the circular core without any external stress zones or structured cladding. The fiber core is composed of silica and germanium-doped silica nanorods ordered in submicrometer interleaved layers. The fiber has a measured cut-off wavelength at 1113 nm, phase birefringence of 0.3×10-4, and an effective mode diameter of 10.5 µm at the wavelength of 1550 nm. The polarization extinction ratio in the fiber is 20 dB at 1550 nm. The fiber is compatible with the standard SMF-28 fiber and can be easily integrated using standard fusion splicing with losses of 0.1 dB.

14.
Appl Opt ; 60(32): 10191-10198, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34807127

RESUMO

We present a complex study of pulse-energy-controlled solitonic self-switching of femtosecond pulses at wavelengths of 1700 and 1560 nm in two nonlinear high-index contrast dual-core fibers having different levels of slight asymmetry. In the case of the fiber with higher dual-core asymmetry excited by 1700 nm pulses, the highest switching contrast of 20.8 dB at 40 mm fiber length was demonstrated. It was accompanied by multiple exchanges of the dominant core at the fiber output, which is a strong signature of the soliton-based switching process. In the case of the fiber with lower dual-core asymmetry, excited by 1560 nm pulses, the highest switching contrast of 21.4 dB at 35 mm fiber length was achieved with a broadband character of the switching in the spectral range of 1450-1650 nm. Both demonstrations represent progress in all-optical switching studies at these particular wavelengths thanks to a comparison between their results, which reveals the requirement of a higher level of dual-core symmetry for applicable C-band operation.

15.
Appl Opt ; 60(15): C84-C91, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34143110

RESUMO

We present laser-based methane detection near 1651 nm inside an antiresonant hollow-core fiber (HCF) using photothermal spectroscopy (PTS). A bismuth-doped fiber amplifier capable of delivering up to more than 160 mW at 1651 nm is used to boost the PTS signal amplitude. The design of the system is described, and the impact of various experimental parameters (such as pump source modulation frequency, modulation amplitude, and optical power) on signal amplitude and signal-to-noise ratio is analyzed. Comparison with similar PTS/HCF-based systems is presented. With 1.3 m long HCF and a fiber amplifier for signal enhancement, this technique is capable of detecting methane at single parts-per-million levels, which makes this robust in-fiber sensing approach promising also for industrial applications such as, e.g., natural gas leak detection.

16.
Opt Express ; 29(12): 18243-18262, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154084

RESUMO

We report on the feasibility of short-wavelength transmission window modification in anti-resonant hollow core fibers using post-processing by hydrofluoric (HF) acid etching. Direct drawing of stacked anti-resonant hollow core fibers with sub-micron thin cladding capillary membranes is technologically challenging, but so far this has been the only proven method of assuring over an octave-spanning transmission windows across the visible and UV wavelengths. In this study we revealed that low HF concentration allows us to reduce the thickness of the cladding capillary membranes from the initial 760 nm down to 180 nm in a controlled process. The glass etching rates have been established for different HF concentrations within a range non-destructive to the anti-resonant cladding structure. Etching resulted in spectral blue-shifting and broadening of anti-resonant transmission windows in all tested fiber samples with lengths between 15 cm and 75 cm. Spectrally continuous transmission, extending from around 200 nm to 650 nm was recorded in 75 cm long fibers with cladding membranes etched down to thickness of 180 nm. The experiment allowed us to verify the applicability and feasibility of controlling a silica fiber post-processing technique, aimed at broadening of anti-resonant transmission windows in hollow core fibers. A practical application of the processed fiber samples is demonstrated with their simple butt-coupling to light-emitting diodes centered at various ultraviolet wavelengths between 265 nm and 365 nm.

17.
Opt Express ; 29(7): 10659-10675, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33820196

RESUMO

A nanostructured core silica fiber with active and photosensitive areas implemented within the fiber core is demonstrated. The photosensitivity, active and passive properties of the fiber can be independently shaped with this new approach. We show that discrete local doping with active ions in form of nanorods allow to obtain effective laser action as in case of continuous distribution of the ions in the core. Co-existing discrete photosensitive nanostructure of germanium doped silica determine single-mode performance and allow inscription of highly efficient Bragg grating over the entire core area. Each nanostructure do not degrade performance of other one since physical interaction between active and photosensitive areas are removed. As a proof of concept, we have designed and fabricated the nanostructured, ytterbium single-mode silica fiber laser with the Bragg grating inscribed in the entire core area. We demonstrated fiber laser with good quality of generated laser beam (M2=1.1) with lasing efficiency of 44% and inscribed Bragg grating with 98.5% efficiency and -18 dB contrast.

18.
Opt Express ; 28(22): 32483-32498, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114933

RESUMO

In this work we discuss the effect of infiltration of different antiresonant fibers with low-refractive-index liquids, such as water and ethanol, on their optical properties. The fibers with single- and double-ring capillaries have been designed to show broad transmission bands in visible and near infrared range as it is required for optofluidics, in particular spectrophotometric applications. We show experimentally that their transmission windows shift toward shorter wavelengths and only modestly reduce their width. The transmission bands are located in the wavelength ranges of 533-670 nm and 707-925 nm, for the fibers when infiltrated with water. The two types of analyzed antiresonant fibers infiltrated with the liquids show similar light guidance properties when they are straight, but significantly lower bending loss can be achieved for the double-ring than for the single-ring antiresonant fiber. For this reason, the double-ring antiresonant fibers are more suitable as a compact solution for optofluidic applications, although transmission windows are reduced due to broader resonance peaks.

19.
Opt Lett ; 45(15): 4280-4283, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32735279

RESUMO

We report on the development and characterization of a birefringent large-mode-area anti-resonant silica fiber. The fiber structure is composed of six non-touching capillaries. The birefringence results from the breaking of the circular symmetry of an air core with increasing of the diameters of two capillaries located across the fiber diameter. We depart from earlier designs of polarizing hollow core fibers, in which coupling of the guided modes was intentionally facilitated with the cladding layout. Instead, with the help of numerical simulations, we enhance birefringence in our design by varying the capillary wall thickness between the larger- and smaller-diameter capillary sections of the cladding. The fiber has a large, elliptical core with semi-axes of ∼55 and 41 µm in diameter, an effective area of the fundamental mode of 1200µm2, and a total outer diameter of 127 µm. The cladding is composed of two pairs of smaller capillaries, which are 18 µm in diameter with 1.66 µm thick walls, and two larger capillaries with a 24 µm diameter and 1.14 µm thick walls, located across the diagonal of the fiber. Measured group birefringence over 1820-1920 nm wavelengths is monotonically increasing from 0.4×10-4 to 2.0×10-4, while its phase birefringence is from 5×10-6 to 1.1×10-5. Despite this, the fiber holds polarization with a 12 dB polarization extinction ratio at 1900 nm over a 1.5 m long sample.

20.
Opt Express ; 28(10): 14774-14787, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403512

RESUMO

We present experimental results on fiber Bragg gratings inscription in nanostructured graded-index (nGRIN) and multi-step index (MSIN) optical fibers, both having non-uniform radial distribution of GeO2 dopant in the fiber cores. In particular, the positive role of radial shaping the GeO2 distribution in the fiber core on grating reflection efficiency is reported. We postulate that an appropriate spatial distribution of the germanium concentration that matches the fundamental mode profile improves grating spectral response due to more efficient grating-mode interaction, as compared with uniformly doped step-index optical fibers with the same overall doping level. Moreover, we show that radially shaped fibers exhibit moderately higher temperature responses than their step-index counterparts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...